Entanglement and control of single nuclear spins in isotopically engineered silicon carbide


Nuclear spins in the solid state are both a cause of decoherence and a valuable resource for spin qubits. In this work, we demonstrate control of isolated 29Si nuclear spins in silicon carbide (SiC) to create an entangled state between an optically active divacancy spin and a strongly coupled nuclear register. We then show how isotopic engineering of SiC unlocks control of single weakly coupled nuclear spins and present an ab initio method to predict the optimal isotopic fraction that maximizes the number of usable nuclear memories. We bolster these results by reporting high-fidelity electron spin control (F = 99.984(1)%), alongside extended coherence times (Hahn-echo T2 = 2.3 ms, dynamical decoupling T2DD > 14.5 ms), and a >40-fold increase in Ramsey spin dephasing time (T2*) from isotopic purification. Overall, this work underlines the importance of controlling the nuclear environment in solid-state systems and links single photon emitters with nuclear registers in an industrially scalable material.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Initializing, controlling and entangling strongly coupled nuclear spins.
Fig. 2: Spectroscopy and control of weakly coupled nuclear spins.
Fig. 3: Isotopic optimization of nuclear memories.
Fig. 4: Divacancy dephasing and decoherence times in isotopically purified material.
Fig. 5: Average single-qubit gate fidelity as measured by randomized benchmarking.

Data availability

The source data of the figures in this manuscript can be accessed from the Zenodo repository62.

Code availability

The codes associated with this manuscript are available from the corresponding author upon request.


  1. 1.

    Hartman, J. S. et al. NMR studies of nitrogen doping in the 4H polytype of silicon carbide: site assignments and spin-lattice relaxation. J. Phys. Chem. C. 113, 15024–15036 (2009).

    CAS  Google Scholar 

  2. 2.

    Niedbalski, P. et al. Magnetic-field-dependent lifetimes of hyperpolarized 13C spins at cryogenic temperature. J. Phys. Chem. B 122, 1898–1904 (2018).

    CAS  Google Scholar 

  3. 3.

    Terblanche, C. J., Reynhardt, E. C. & Van Wyk, J. A. 13C spin-lattice relaxation in natural diamond: Zeeman relaxation at 4.7 T and 300 K due to fixed paramagnetic nitrogen defects. Solid State Nucl. Magn. Reson. 20, 1–22 (2001).

    CAS  Google Scholar 

  4. 4.

    Bradley, C. E. et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. X 9, 31045 (2019).

    CAS  Google Scholar 

  5. 5.

    Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

    CAS  Google Scholar 

  6. 6.

    Zaiser, S. et al. Enhancing quantum sensing sensitivity by a quantum memory. Nat. Commun. 7, 1–11 (2016).

    Google Scholar 

  7. 7.

    Taminiau, T. H., Cramer, J., Van Der Sar, T., Dobrovitski, V. V. & Hanson, R. Universal control and error correction in multi-qubit spin registers in diamond. Nat. Nanotechnol. 9, 171–176 (2014).

    CAS  Google Scholar 

  8. 8.

    Reiserer, A. et al. Robust quantum-network memory using decoherence-protected subspaces of nuclear spins. Phys. Rev. X 6, 021040 (2016).

    Google Scholar 

  9. 9.

    Kalb, N. et al. Entanglement distillation between solid-state quantum network nodes. Science 356, 928–932 (2017).

    CAS  Google Scholar 

  10. 10.

    Cujia, K. S., Boss, J. M., Herb, K., Zopes, J. & Degen, C. L. Tracking the precession of single nuclear spins by weak measurements. Nature 571, 230–233 (2019).

    CAS  Google Scholar 

  11. 11.

    Unden, T. K., Louzon, D., Zwolak, M., Zurek, W. H. & Jelezko, F. Revealing the emergence of classicality using nitrogen-vacancy centers. Phys. Rev. Lett. 123, 140402 (2019).

    CAS  Google Scholar 

  12. 12.

    Klimov, P. V., Falk, A. L., Christle, D. J., Dobrovitski, V. V. & Awschalom, D. D. Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble. Sci. Adv. 1, e1501015 (2015).

    Google Scholar 

  13. 13.

    Koehl, W. F., Buckley, B. B., Heremans, F. J., Calusine, G. & Awschalom, D. D. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).

    CAS  Google Scholar 

  14. 14.

    Widmann, M. et al. Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 14, 164–168 (2015).

    CAS  Google Scholar 

  15. 15.

    Diler, B. et al. Coherent control and high-fidelity readout of chromium ions in commercial silicon carbide. npj Quantum Inf. 6, 11 (2020).

  16. 16.

    Wolfowicz, G. et al. Vanadium spin qubits as telecom quantum emitters in silicon carbide. Sci. Adv. 6, eaaz1192 (2020).

    Google Scholar 

  17. 17.

    Son, N. T. et al. Developing silicon carbide for quantum spintronics. Appl. Phys. Lett. 116, 190501 (2020).

  18. 18.

    Anderson, C. P. et al. Electrical and optical control of single spins integrated in scalable semiconductor devices. Science 366, 1225–1230 (2019).

    CAS  Google Scholar 

  19. 19.

    Christle, D. J. et al. Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface. Phys. Rev. X 7, 021046 (2017).

    Google Scholar 

  20. 20.

    Crook, A. L. et al. Purcell enhancement of a single silicon carbide color center with coherent spin control. Nano Lett. 20, 3427–3434 (2020).

    CAS  Google Scholar 

  21. 21.

    Nagy, R. et al. High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide. Nat. Commun. 10, 1954 (2019).

  22. 22.

    Taminiau, T. H. et al. Detection and control of individual nuclear spins using a weakly coupled electron spin. Phys. Rev. Lett. 109, 137602 (2012).

    CAS  Google Scholar 

  23. 23.

    Itoh, K. M. & Watanabe, H. Isotope engineering of silicon and diamond for quantum computing and sensing applications. MRS Commun. 4, 143–157 (2014).

    CAS  Google Scholar 

  24. 24.

    Rong, X. et al. Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions. Nat. Commun. 6, 8748 (2015).

  25. 25.

    Son, N. T. et al. Divacancy in 4H-SiC. Phys. Rev. Lett. 96, 055501 (2006).

    CAS  Google Scholar 

  26. 26.

    Waldherr, G. et al. Quantum error correction in a solid-state hybrid spin register. Nature 506, 204–207 (2014).

    CAS  Google Scholar 

  27. 27.

    Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

    CAS  Google Scholar 

  28. 28.

    Falk, A. L. et al. Optical polarization of nuclear spins in silicon carbide. Phys. Rev. Lett. 114, 247603 (2015).

    Google Scholar 

  29. 29.

    Fuchs, G. D., Burkard, G., Klimov, P. V. & Awschalom, D. D. A quantum memory intrinsic to single nitrogen-vacancy centres in diamond. Nat. Phys. 7, 789–793 (2011).

    Google Scholar 

  30. 30.

    Pfaff, W. et al. Demonstration of entanglement-by-measurement of solid-state qubits. Nat. Phys. 9, 29–33 (2013).

    CAS  Google Scholar 

  31. 31.

    Gurudev Dutt, M. V. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    CAS  Google Scholar 

  32. 32.

    Kalb, N., Humphreys, P. C., Slim, J. J. & Hanson, R. Dephasing mechanisms of diamond-based nuclear-spin memories for quantum networks. Phys. Rev. A 97, 062330 (2018).

    CAS  Google Scholar 

  33. 33.

    Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    CAS  Google Scholar 

  34. 34.

    Aslam, N. et al. Nanoscale nuclear magnetic resonance with chemical resolution. Science 357, 67–71 (2017).

    CAS  Google Scholar 

  35. 35.

    Müller, C. et al. Nuclear magnetic resonance spectroscopy with single spin sensitivity. Nat. Commun. 5, 8748 (2014).

  36. 36.

    Abobeih, M. H. et al. Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor. Nature 576, 411–415 (2019).

    CAS  Google Scholar 

  37. 37.

    Seo, H. et al. Quantum decoherence dynamics of divacancy spins in silicon carbide. Nat. Commun. 7, 12935 (2016).

  38. 38.

    Miao, K. C. et al. Electrically driven optical interferometry with spins in silicon carbide. Sci. Adv. 5, eaay0527 (2019).

    CAS  Google Scholar 

  39. 39.

    Miao, K. C. et al. Universal coherence protection in a solid-state spin qubit. Science https://doi.org/10.1126/science.abc5186 (2020).

  40. 40.

    Christle, D. J. et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nat. Mater. 14, 160–163 (2015).

    CAS  Google Scholar 

  41. 41.

    Bonato, C. et al. Optimized quantum sensing with a single electron spin using real-time adaptive measurements. Nat. Nanotechnol. 11, 247–252 (2016).

    CAS  Google Scholar 

  42. 42.

    Bauch, E. et al. Ultralong dephasing times in solid-state spin ensembles via quantum control. Phys. Rev. X 8, 031025 (2018).

    CAS  Google Scholar 

  43. 43.

    Ishikawa, T. et al. Optical and spin coherence properties of nitrogen-vacancy centers placed in a 100 nm thick isotopically purified diamond layer. Nano Lett. 12, 34 (2012).

    Google Scholar 

  44. 44.

    Clerk, A. A., Lehnert, K. W., Bertet, P., Petta, J. R. & Nakamura, Y. Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. 16, 257–267 (2020).

  45. 45.

    Whiteley, S. J. et al. Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics. Nat. Phys. 15, 490–495 (2019).

    CAS  Google Scholar 

  46. 46.

    Jamonneau, P. et al. Competition between electric field and magnetic field noise in the decoherence of a single spin in diamond. Phys. Rev. B 93, 024305 (2016).

    Google Scholar 

  47. 47.

    Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009).

    CAS  Google Scholar 

  48. 48.

    Herbschleb, E. D. et al. Ultra-long coherence times amongst room-temperature solid-state spins. Nat. Commun. 10, 3766 (2019).

  49. 49.

    Witzel, W. M., Carroll, M. S., Cywiński, A. & Das Sarma, S. Quantum decoherence of the central spin in a sparse system of dipolar coupled spins. Phys. Rev. B 86, 035452 (2012).

    Google Scholar 

  50. 50.

    Bar-Gill, N. et al. Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems. Nat. Commun. 3, 858 (2012).

  51. 51.

    Yang, C. H. et al. Silicon qubit fidelities approaching incoherent noise limits via pulse engineering. Nat. Electron. 2, 151–158 (2019).

    Google Scholar 

  52. 52.

    Yoneda, J. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol. 13, 102–106 (2018).

    CAS  Google Scholar 

  53. 53.

    Knill, E. Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005).

    CAS  Google Scholar 

  54. 54.

    Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014).

    CAS  Google Scholar 

  55. 55.

    Campbell, E. T., Terhal, B. M. & Vuillot, C. Roads towards fault-tolerant universal quantum computation. Nature 549, 172–179 (2017).

    CAS  Google Scholar 

  56. 56.

    Petersen, E. S. et al. Nuclear spin decoherence of neutral 31 P donors in silicon: effect of environmental 29 Si nuclei. RAPID Commun. Phys. Rev. B 93, 161202 (2016).

    Google Scholar 

  57. 57.

    Guichard, R., Balian, S. J., Wolfowicz, G., Mortemousque, P. A. & Monteiro, T. S. Decoherence of nuclear spins in the frozen core of an electron spin. Phys. Rev. B 91, 214303 (2015).

    Google Scholar 

  58. 58.

    Dong, W., Calderon-Vargas, F. A. & Economou, S. E. Precise high-fidelity electron-nuclear spin entangling gates in NV centers via hybrid dynamical decoupling sequences. New J. Phys. 22, 073059 (2020).

    Google Scholar 

  59. 59.

    Oliveros, A., Guiseppi-Elie, A. & Saddow, S. E. Silicon carbide: a versatile material for biosensor applications. Biomed. Microdevices 15, 353–368 (2013).

    Google Scholar 

  60. 60.

    Lebedev, A. A. Radiation Effects in SiC Vol. 6 (Materials Research Forum, 2017).

  61. 61.

    Yang, W. & Liu, R. B. Quantum many-body theory of qubit decoherence in a finite-size spin bath. Phys. Rev. B 78, 085315 (2008).

    Google Scholar 

  62. 62.

    Bourassa, A. et al. Dataset for “Entanglement and control of single nuclear spins in isotopically engineered silicon carbide”. Zenodo https://doi.org/10.5281/zenodo.3977802 (2020).

Download references


We thank E. O. Glen, S. Bayliss, G. Wolfowicz and P. J. Duda for useful discussions and assistance. We thank Quantum Opus for their assistance with detectors. This work made use of the UChicago MRSEC (NSF DMR-1420709) and Pritzker Nanofabrication Facility, which receives support from the SHyNE, a node of the NSF’s National Nanotechnology Coordinated Infrastructure (NSF ECCS-1542205). C.P.A., A.B., K.C.M., A.L.C. and D.D.A. were supported by grant nos. AFOSR FA9550-19-1-0358, DARPA D18AC00015KK1932 and ONR N00014-17-1-3026. T.O. was supported by KAKENHI (grant nos. 18H03770 and 20H00355). J.U.H was supported by the Swedish Energy Agency (grant no. 43611-1). N.T.S. was supported by the Swedish Research Council (grant no. VR 2016-04068) and the Carl Tryggers Stiftelse för Vetenskaplig Forskning (grant no. CTS 15:339). J.U.H. and N.T.S. were also supported by the EU H2020 project QuanTELCO (grant no. 862721) and the Knut and Alice Wallenberg Foundation (grant no. KAW 2018.0071).

Author information




A.B. and C.P.A. conceived the experiments, performed the measurements and analysed the data. C.P.A. fabricated the devices. A.B. and K.C.M developed the experimental setup. M.O., H.M. and G.G. provided a theoretical framework. M.O. performed the numerical simulations and computations. A.L.C. assisted in device fabrication. H.A. and T.O. performed the electron irradiation. J.U.H. and N.T.S. grew the isotopically purified SiC samples. D.D.A. advised on all efforts. All authors contributed to manuscript preparation.

Corresponding author

Correspondence to David D. Awschalom.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21 and discussion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bourassa, A., Anderson, C.P., Miao, K.C. et al. Entanglement and control of single nuclear spins in isotopically engineered silicon carbide. Nat. Mater. (2020). https://doi.org/10.1038/s41563-020-00802-6

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing