Engineering quantum materials with chiral optical cavities

Strong light–matter coupling in quantum cavities provides a pathway to break fundamental materials symmetries, like time-reversal symmetry in chiral cavities. This Comment discusses the potential to realize non-equilibrium states of matter that have so far been only accessible in ultrafast and ultrastrong laser-driven materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Cavity modes for different cavity environments leading to symmetry-breaking configurations.
Fig. 2: QED materials engineering and phenomenology.

References

  1. 1.

    Keimer, B. & Moore, J. E. Nat. Phys. 13, 1045–1055 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Tokura, Y., Kawasaki, M. & Nagaosa, N. Nat. Phys. 13, 1056–1068 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    Hsieh, D., Basov, D. N. & Averitt, R. D. Nat. Mater. 16, 1077–1088 (2017).

    Article  Google Scholar 

  4. 4.

    Nova, T. F., Disa, A. S., Fechner, M. & Cavalleri, A. Science 364, 1075–1079 (2019).

    CAS  Article  Google Scholar 

  5. 5.

    Li, X. et al. Science 364, 1079–1082 (2019).

    CAS  Article  Google Scholar 

  6. 6.

    Lindner, N. H., Refael, G. & Galitski, V. Nat. Phys. 7, 490–495 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Science 342, 453–457 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Oka, T. & Kitamura, S. Annu. Rev. Condens. Matter Phys. 10, 387–408 (2018).

    Article  Google Scholar 

  9. 9.

    Rudner, M. S. & Lindner, N. H. BNat. Rev. Phys. 2, 229–244 (2020).

    CAS  Google Scholar 

  10. 10.

    Ozawa, T. & Price, H. M. Nat. Rev. Phys. 1, 349–357 (2019).

    Article  Google Scholar 

  11. 11.

    Kockum, A. F., Miranowicz, A., De Liberato, S., Savasta, S. & Nori, F. Nat. Rev. Phys. 1, 19–40 (2019).

    Article  Google Scholar 

  12. 12.

    Plum, E. & Zheludev, N. I. Appl. Phys. Lett. 106, 221901 (2015).

    Article  Google Scholar 

  13. 13.

    Kasprzak, J. et al. Nature 443, 409–414 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    Schäfer, C., Ruggenthaler, M. & Rubio, A. Phys. Rev. A 98, 043801 (2018).

    Article  Google Scholar 

  15. 15.

    Thomas, A. et al. Preprint at https://arxiv.org/abs/1911.01459 (2019).

  16. 16.

    Curtis, J. B., Raines, Z. M., Allocca, A. A., Hafezi, M. & Galitski, V. M. Phys. Rev. Lett. 122, 167002 (2019).

    CAS  Article  Google Scholar 

  17. 17.

    Sentef, M. A., Ruggenthaler, M. & Rubio, A. Sci. Adv. 4, eaau6969 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    Schlawin, F., Cavalleri, A. & Jaksch, D. Phys. Rev. Lett. 122, 133602 (2019).

    CAS  Article  Google Scholar 

  19. 19.

    Mazza, G. & Georges, A. Phys. Rev. Lett. 122, 017401 (2019).

    CAS  Article  Google Scholar 

  20. 20.

    Latini, S., Ronca, E., De Giovannini, U., Hübener, H. & Rubio, A. Nano Lett. 19, 3473–3479 (2019).

    CAS  Article  Google Scholar 

  21. 21.

    Chen, Y.-J., Cain, J. D., Stanev, T. K., Dravid, V. P. & Stern, N. P. Nat. Photon. 11, 431–435 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Sun, Z. et al. Nat. Photon. 11, 491–496 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Dufferwiel, S. et al. Nat. Photon. 11, 497–501 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Vitale, S. A. et al. Small 14, 1801483 (2018).

    Article  Google Scholar 

  25. 25.

    Ashida, Y. et al. Preprint at https://arxiv.org/abs/2003.13695 (2020).

  26. 26.

    Oka, T. & Aoki, H. Phys. Rev. B 79, 081406 (2009).

    Article  Google Scholar 

  27. 27.

    McIver, J. W. et al. Nat. Phys. 16, 38–41 (2019).

    Article  Google Scholar 

  28. 28.

    Sato, S. A. et al. Phys. Rev. B 99, 214302 (2019).

    CAS  Article  Google Scholar 

  29. 29.

    Wang, X., Ronca, E. & Sentef, M. A. Phys. Rev. B 99, 235156 (2019).

    CAS  Article  Google Scholar 

  30. 30.

    Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Nat. Commun. 8, 13940 (2017).

    Article  Google Scholar 

  31. 31.

    Sodemann, I. & Fu, L. Phys. Rev. Lett. 115, 216806 (2015).

    Article  Google Scholar 

  32. 32.

    Scalari, G. et al. Science 335, 1323–1326 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to S. A. Sato, D. Shin, M. A. Sentef, E. Ronca, S. Latini, D. Basov, J.-M. Triscone, A. Pasupathy, E. Demler, A. Cavalleri, A. Imamoglu, J. Flick, A. Georges and A. Millis for the fruitful discussion. We acknowledge financial support from the European Research Council (ERC-2015-AdG-694097), SNF project 200020_192330 and the Cluster of Excellence Advanced Imaging of Matter (AIM) EXC 2056-390715994. The Flatiron Institute is a division of the Simons Foundation. Support by the Max Planck — New York City Center for Non-Equilibrium Quantum Phenomena is acknowledged.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hannes Hübener or Umberto De Giovannini or Angel Rubio.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hübener, H., De Giovannini, U., Schäfer, C. et al. Engineering quantum materials with chiral optical cavities. Nat. Mater. (2020). https://doi.org/10.1038/s41563-020-00801-7

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing