Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes

Abstract

We performed constant-potential molecular dynamics simulations to analyse the double-layer structure and capacitive performance of supercapacitors composed of conductive metal–organic framework (MOF) electrodes and ionic liquids. The molecular modelling clarifies how ions transport and reside inside polarized porous MOFs, and then predicts the corresponding potential-dependent capacitance in characteristic shapes. The transmission line model was adopted to characterize the charging dynamics, which further allowed evaluation of the capacitive performance of this class of supercapacitors at the macroscale from the simulation-obtained data at the nanoscale. These ‘computational microscopy’ results were supported by macroscopic electrochemical measurements. Such a combined nanoscale-to-macroscale investigation demonstrates the potential of MOF supercapacitors for achieving unprecedentedly high volumetric energy and power densities. It gives molecular insights into preferred structures of MOFs for accomplishing consistent performance with optimal energy–power balance, providing a blueprint for future characterization and design of these new supercapacitor systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematics of molecular simulations of MOF-based supercapacitors.
Fig. 2: In-pore charge/ion density and orientation distributions.
Fig. 3: Capacitance and energy density.
Fig. 4: Charging process at nanoscale.
Fig. 5: Electrochemical measurement of Ni3(HITP)2 electrodes in a symmetrical supercapacitor cell.
Fig. 6: Capacitive performance predicted for practical cell-size supercapacitors.

Data availability

The theoretical and experimental data presented in this work are available from the corresponding authors on reasonable request.

References

  1. 1.

    Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008).

    CAS  Google Scholar 

  2. 2.

    Sun, H. et al. Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater. 4, 45–60 (2018).

    Google Scholar 

  3. 3.

    Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).

    Google Scholar 

  4. 4.

    Guan, B. Y., Yu, X. Y., Wu, H. B. & Lou, X. W. Complex nanostructures from materials based on metal–organic frameworks for electrochemical energy storage and conversion. Adv. Mater. 29, 1703614 (2017).

    Google Scholar 

  5. 5.

    Wang, H., Zhu, Q.-L., Zou, R. & Xu, Q. Metal-organic frameworks for energy applications. Chem 2, 52–80 (2017).

    CAS  Google Scholar 

  6. 6.

    Sun, L., Campbell, M. G. & Dincă, M. Electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016).

    CAS  Google Scholar 

  7. 7.

    Zhou, J. & Wang, B. Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chem. Soc. Rev. 46, 6927–6945 (2017).

    CAS  Google Scholar 

  8. 8.

    Feng, D. et al. Robust and conductive two-dimensional metal–organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 3, 30–36 (2018).

    CAS  Google Scholar 

  9. 9.

    Choi, K. M. et al. Supercapacitors of nanocrystalline metal–organic frameworks. ACS Nano 8, 7451–7457 (2014).

    CAS  Google Scholar 

  10. 10.

    Sheberla, D. et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220–224 (2017).

    CAS  Google Scholar 

  11. 11.

    Fedorov, M. V. & Kornyshev, A. A. Ionic liquids at electrified interfaces. Chem. Rev. 114, 2978–3036 (2014).

    CAS  Google Scholar 

  12. 12.

    Hayes, R., Warr, G. G. & Atkin, R. Structure and nanostructure in ionic liquids. Chem. Rev. 115, 6357–6426 (2015).

    CAS  Google Scholar 

  13. 13.

    Watanabe, M. et al. Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev. 117, 7190–7239 (2017).

    CAS  Google Scholar 

  14. 14.

    Armand, M., Endres, F., MacFarlane, D. R., Ohno, H. & Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009).

    CAS  Google Scholar 

  15. 15.

    Salanne, M. et al. Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2016).

    CAS  Google Scholar 

  16. 16.

    Vatamanu, J., Borodin, O., Olguin, M., Yushin, G. & Bedrov, D. Charge storage at the nanoscale: understanding the trends from the molecular scale perspective. J. Mater. Chem. A 5, 21049–21076 (2017).

    CAS  Google Scholar 

  17. 17.

    Zhan, C. et al. Computational insights into materials and interfaces for capacitive energy storage. Adv. Sci. 4, 1700059 (2017).

    Google Scholar 

  18. 18.

    Shao, Y. et al. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118, 9233–9280 (2018).

    CAS  Google Scholar 

  19. 19.

    Vatamanu, J., Borodin, O. & Smith, G. D. Molecular insights into the potential and temperature dependences of the differential capacitance of a room-temperature ionic liquid at graphite electrodes. J. Am. Chem. Soc. 132, 14825–14833 (2010).

    CAS  Google Scholar 

  20. 20.

    Kornyshev, A. A. & Qiao, R. Three-dimensional double layers. J. Phys. Chem. C 118, 18285–18290 (2014).

    CAS  Google Scholar 

  21. 21.

    Largeot, C. et al. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130, 2730–2731 (2008).

    CAS  Google Scholar 

  22. 22.

    Zhong, C. et al. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015).

    CAS  Google Scholar 

  23. 23.

    Yang, X., Cheng, C., Wang, Y., Qiu, L. & Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341, 534–537 (2013).

    CAS  Google Scholar 

  24. 24.

    Yang, H. et al. Graphene supercapacitor with both high power and energy density. Nanotechnology 28, 445401 (2017).

    Google Scholar 

  25. 25.

    Kondrat, S., Wu, P., Qiao, R. & Kornyshev, A. A. Accelerating charging dynamics in subnanometre pores. Nat. Mater. 13, 387–393 (2014).

    CAS  Google Scholar 

  26. 26.

    Masarapu, C., Zeng, H. F., Hung, K. H. & Wei, B. Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 3, 2199–2206 (2009).

    CAS  Google Scholar 

  27. 27.

    Fletcher, S. I. et al. The effects of temperature on the performance of electrochemical double layer capacitors. J. Power Sources 195, 7484–7488 (2010).

    CAS  Google Scholar 

  28. 28.

    Stoppa, A., Zech, O., Kunz, W. & Buchner, R. The conductivity of imidazolium-based ionic liquids from (−35 to 195) °C. A. Variation of cation’s alkyl chain. J. Chem. Eng. Data 55, 1768–1773 (2010).

    CAS  Google Scholar 

  29. 29.

    Kondrat, S. & Kornyshev, A. A. Superionic state in double-layer capacitors with nanoporous electrodes. J. Phys. Condens. Matter 23, 022201 (2011).

    CAS  Google Scholar 

  30. 30.

    Futamura, R. et al. Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores. Nat. Mater. 16, 1225 (2017).

    CAS  Google Scholar 

  31. 31.

    Merlet, C. et al. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat. Mater. 11, 306–310 (2012).

    CAS  Google Scholar 

  32. 32.

    Sheberla, D. et al. High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal–organic graphene analogue. J. Am. Chem. Soc. 136, 8859–8862 (2014).

    CAS  Google Scholar 

  33. 33.

    Chaban, V. V., Voroshylova, I. V. & Kalugin, O. N. A new force field model for the simulation of transport properties of imidazolium-based ionic liquids. Phys. Chem. Chem. Phys. 13, 7910–7920 (2011).

    CAS  Google Scholar 

  34. 34.

    Sun, L. et al. A microporous and naturally nanostructured thermoelectric metal-organic framework with ultralow thermal conductivity. Joule 1, 168–177 (2017).

    CAS  Google Scholar 

  35. 35.

    Park, J. et al. Stabilization of hexaaminobenzene in a 2D conductive metal–organic framework for high power sodium storage. J. Am. Chem. Soc. 140, 10315–10323 (2018).

    CAS  Google Scholar 

  36. 36.

    Nonoguchi, Y., Sato, D. & Kawai, T. Crystallinity-dependent thermoelectric properties of a two-dimensional coordination polymer: Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2. Polymers 10, 962 (2018).

    Google Scholar 

  37. 37.

    Izadi-Najafabadi, A., Futaba, D. N., Iijima, S. & Hata, K. Ion diffusion and electrochemical capacitance in aligned and packed single-walled carbon nanotubes. J. Am. Chem. Soc. 132, 18017–18019 (2010).

    CAS  Google Scholar 

  38. 38.

    Eftekhari, A. Supercapacitors utilising ionic liquids. Energy Storage Mater. 9, 47–69 (2017).

    Google Scholar 

  39. 39.

    González, A., Goikolea, E., Barrena, J. A. & Mysyk, R. Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016).

    Google Scholar 

  40. 40.

    Li, P. & Wang, B. Recent development and application of conductive MOFs. Isr. J. Chem. 58, 1010–1018 (2018).

    CAS  Google Scholar 

  41. 41.

    Vatamanu, J., Vatamanu, M. & Bedrov, D. Non-faradaic energy storage by room temperature ionic liquids in nanoporous electrodes. ACS Nano 9, 5999–6017 (2015).

    CAS  Google Scholar 

  42. 42.

    Park, J. et al. Synthetic routes for a 2D semiconductive copper hexahydroxybenzene metal–organic framework. J. Am. Chem. Soc. 140, 14533–14537 (2018).

    CAS  Google Scholar 

  43. 43.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  44. 44.

    Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. & Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    CAS  Google Scholar 

  45. 45.

    Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).

    CAS  Google Scholar 

  46. 46.

    Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Google Scholar 

  47. 47.

    Gingrich, T. R. & Wilson, M. On the Ewald summation of Gaussian charges for the simulation of metallic surfaces. Chem. Phys. Lett. 500, 178–183 (2010).

    CAS  Google Scholar 

  48. 48.

    Fang, T., Konar, A., Xing, H. & Jena, D. Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl. Phys. Lett. 91, 092109–092103 (2007).

    Google Scholar 

  49. 49.

    Xia, J., Chen, F., Li, J. & Tao, N. Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505–509 (2009).

    CAS  Google Scholar 

  50. 50.

    Zhan, C., Neal, J., Wu, J. & Jiang, D. Quantum effects on the capacitance of graphene-based electrodes. J. Phys. Chem. C 119, 22297–22303 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

G.F., S.B., Ming Chen, L.N., Mingyu Chen, T.W., J.W., R.W. and J.F. acknowledge the funding support from the National Natural Science Foundation of China (51876072, 51836003) and Shenzhen Basic Research Project (JCYJ20170307171511292). S.B. and R.W. thank the China Scholarship Council for financial support. A.A.K. acknowledges the Leverhulme Trust for funding (RPG-2016-223), HUST for the support of this project through the HUST Honorary Professorship, and Imperial College for the support of this form of collaboration between the involved HUST and Imperial groups, and thanks the Imperial College–MIT seed fund for supporting the collaboration between the two universities. M.D., H.B. and T.C. thank the Army Research Office (W911NF-17-1-0174) for support. The computation was completed using the Tianhe II supercomputer in the National Supercomputing Center in Guangzhou. Part of the characterization was performed at the Analytical & Testing Center of HUST.

Author information

Affiliations

Authors

Contributions

G.F. and A.A.K. set the strategy of this project in consultation with M.D.; G.F. devised simulation approaches; G.F. and M.D. designed the experiment. S.B. performed the major part of the MD simulations with participation of Ming Chen, R.W. and J.F.; Ming Chen did all density functional theory calculations; H.B., L.N., Mingyu Chen, T.W., J.W. and T.C. carried out the experiment, in which L.N. developed MOF synthesis procedures; G.F., S.B., Ming Chen, L.N., Mingyu Chen and A.A.K. analysed the data and wrote the manuscript; G.F., S.B., A.A.K., Ming Chen, H.B. and M.D. contributed to the discussion of results, editing and revising the paper.

Corresponding authors

Correspondence to Alexei A. Kornyshev or Guang Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–29, discussion and Tables 1–6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bi, S., Banda, H., Chen, M. et al. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat. Mater. 19, 552–558 (2020). https://doi.org/10.1038/s41563-019-0598-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing