Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rapid fabrication of precise high-throughput filters from membrane protein nanosheets


Biological membranes are ideal for separations as they provide high permeability while maintaining high solute selectivity due to the presence of specialized membrane protein (MP) channels. However, successful integration of MPs into manufactured membranes has remained a significant challenge. Here, we demonstrate a two-hour organic solvent method to develop 2D crystals and nanosheets of highly packed pore-forming MPs in block copolymers (BCPs). We then integrate these hybrid materials into scalable MP-BCP biomimetic membranes. These MP-BCP nanosheet membranes maintain the molecular selectivity of the three types of β-barrel MP channels used, with pore sizes of 0.8 nm, 1.3 nm, and 1.5 nm. These biomimetic membranes demonstrate water permeability that is 20–1,000 times greater than that of commercial membranes and 1.5–45 times greater than that of the latest research membranes with comparable molecular exclusion ratings. This approach could provide high performance alternatives in the challenging sub-nanometre to few-nanometre size range.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Stable β-barrel MP-BCP-based scalable membranes.
Fig. 2: 2D crystals or nanosheets of three β-barrel channel proteins reconstituted in BCP membrane matrices.
Fig. 3: 2D OmpF nanosheets can be assembled on a PC (50 nm), PES (MP005) or aluminium oxide (0.02 μm Anodisc) substrate.
Fig. 4: Three scalable biomimetic membranes based on β-barrel channel MPs and BCPs demonstrate distinct molecular separations and enhanced pure-water permeability compared with current commercial membranes.
Fig. 5: Comparison of water permeability (LMH bar–1) and MWCO (Da) of MP-based membranes with commercial NF or ultrafiltration membranes tested in the same experimental setup.

Data availability

The data supporting the findings of this study are available within the article and its supplementary information files and available from the authors upon reasonable request.


  1. 1.

    Kumar, M., Grzelakowski, M., Zilles, J., Clark, M. & Meier, W. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proc. Natl Acad. Sci. USA 104, 20719–20724 (2007).

    CAS  Google Scholar 

  2. 2.

    Ren, T. W. et al. Membrane protein insertion into and compatibility with biomimetic membranes. Adv. Biosyst. 1, 1700053 (2017).

    Google Scholar 

  3. 3.

    Kumar, M., Habel, J. E., Shen, Y.-X., Meier, W. P. & Walz, T. High-density reconstitution of functional water channels into vesicular and planar block copolymer membranes. J. Am. Chem. Soc. 134, 18631–18637 (2012).

    CAS  Google Scholar 

  4. 4.

    Chowdhury, R. et al. PoreDesigner for tuning solute selectivity in a robust and highly permeable outer membrane pore. Nat. Commun. 9, 3661 (2018).

    Google Scholar 

  5. 5.

    Shen, Y.-x et al. Highly permeable artificial water channels that can self-assemble into two-dimensional arrays. Proc. Natl Acad. Sci. USA 112, 9810–9815 (2015).

    CAS  Google Scholar 

  6. 6.

    Kocsis, I., Sun, Z., Legrand, Y. M. & Barboiu, M. Artificial water channels—deconvolution of natural Aquaporins through synthetic design. npj Clean Water 1, 13 (2018).

    Google Scholar 

  7. 7.

    Shen, Y.-x et al. Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes. Nat. Commun. 9, 2294 (2018).

    Google Scholar 

  8. 8.

    Lang, C. et al. Biomimetic separation of transport and matrix functions in lamellar block copolymer channel-based membranes. ACS Nano 13, 8292–8302 (2019).

    CAS  Google Scholar 

  9. 9.

    Tunuguntla, R. H. et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357, 792–796 (2017).

    CAS  Google Scholar 

  10. 10.

    Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Google Scholar 

  11. 11.

    Mohammad, A. W. et al. Nanofiltration membranes review: recent advances and future prospects. Desalination 356, 226–254 (2015).

    CAS  Google Scholar 

  12. 12.

    Shen, Y. X., Saboe, P. O., Sines, I. T., Erbakan, M. & Kumar, M. Biomimetic membranes: a review. J. Membr. Sci. 454, 359–381 (2014).

    CAS  Google Scholar 

  13. 13.

    Duong, P. H. H. et al. Planar biomimetic aquaporin-incorporated triblock copolymer membranes on porous alumina supports for nanofiltration. J. Membr. Sci. 409, 34–43 (2012).

    Google Scholar 

  14. 14.

    Wang, M. et al. Layer-by-layer assembly of aquaporin Z-incorporated biomimetic membranes for water purification. Environ. Sci. Technol. 49, 3761–3768 (2015).

    CAS  Google Scholar 

  15. 15.

    Helix-Nielsen, C. Biomimetic membranes as a technology platform: challenges and opportunities. Membranes 8, 44 (2018).

    Google Scholar 

  16. 16.

    Tang, C. Y., Zhao, Y., Wang, R., Helix-Nielsen, C. & Fane, A. G. Desalination by biomimetic aquaporin membranes: review of status and prospects. Desalination 308, 34–40 (2013).

    CAS  Google Scholar 

  17. 17.

    Song, W., Tu, Y.-M., Oh, H., Samineni, L. & Kumar, M. Hierarchical optimization of high-performance biomimetic and bioinspired membranes. Langmuir 35, 589–607 (2018).

    Google Scholar 

  18. 18.

    Tamm, L. K., Arora, A. & Kleinschmidt, J. H. Structure and assembly of beta-barrel membrane proteins. J. Biol. Chem. 276, 32399–32402 (2001).

    CAS  Google Scholar 

  19. 19.

    Wimley, W. C. The versatile β-barrel membrane protein. Curr. Opin. Struct. Biol. 13, 404–411 (2003).

    CAS  Google Scholar 

  20. 20.

    Cowan, S. W. et al. Crystal structures explain functional properties of two E. coli porins. Nature 358, 727–733 (1992).

    CAS  Google Scholar 

  21. 21.

    Phale, P. S. et al. Stability of trimeric OmpF porin: the contributions of the latching loop L2. Biochemistry 37, 15663–15670 (1998).

    CAS  Google Scholar 

  22. 22.

    Lee, A. G. Lipid-protein interactions in biological membranes: a structural perspective. Biochim. Biophys. Acta 1612, 1–40 (2003).

    CAS  Google Scholar 

  23. 23.

    Palivan, C. G. et al. Bioinspired polymer vesicles and membranes for biological and medical applications. Chem. Soc. Rev. 45, 377–411 (2016).

    CAS  Google Scholar 

  24. 24.

    Klara, S. S. et al. Magnetically directed two-dimensional crystallization of OmpF membrane proteins in block copolymers. J. Am. Chem. Soc. 138, 28–31 (2016).

    CAS  Google Scholar 

  25. 25.

    Cowan, S. et al. The structure of OmpF porin in a tetragonal crystal form. Structure 3, 1041–1050 (1995).

    CAS  Google Scholar 

  26. 26.

    Pebay-Peyroula, E., Garavito, R., Rosenbusch, J., Zulauf, M. & Timmins, P. Detergent structure in tetragonal crystals of OmpF porin. Structure 3, 1051–1059 (1995).

    CAS  Google Scholar 

  27. 27.

    Haltia, T. & Freire, E. Forces and factors that contribute to the structural stability of membrane-proteins. Biochim. Biophys. Acta 1228, 1–27 (1995).

    Google Scholar 

  28. 28.

    White, S. H. & Wimley, W. C. Membrane protein folding and stability: physical principles. Annu. Rev. Biophys. Biomol. Struct. 28, 319–365 (1999).

    CAS  Google Scholar 

  29. 29.

    Kleffel, B., Garavito, R. M., Baumeister, W. & Rosenbusch, J. P. Secondary structure of a channel-forming protein: porin from E. coli outer membranes. EMBO J. 4, 1589–1592 (1985).

    CAS  Google Scholar 

  30. 30.

    Mohammad, M. M., Howard, K. R. & Movileanu, L. Redesign of a plugged β-barrel membrane protein. J. Biol. Chem. 286, 8000–8013 (2011).

    CAS  Google Scholar 

  31. 31.

    Gouaux, J. E. et al. Subunit stoichiometry of staphylococcal alpha-hemolysin in crystals and on membranes: a heptameric transmembrane pore. Proc. Natl Acad. Sci. USA 91, 12828–12831 (1994).

    CAS  Google Scholar 

  32. 32.

    Jap, B. K. et al. 2D crystallization: from art to science. Ultramicroscopy 46, 45–84 (1992).

    CAS  Google Scholar 

  33. 33.

    Perry, M. et al. Challenges in commercializing biomimetic membranes. Membranes 5, 685–701 (2015).

    CAS  Google Scholar 

  34. 34.

    Kowal, J., Zhang, X. Y., Dinu, I. A., Palivan, C. G. & Meier, W. Planar biomimetic membranes based on amphiphilic block copolymers. ACS Macro Lett. 3, 59–63 (2014).

    CAS  Google Scholar 

  35. 35.

    Jin, H. et al. Highly stable and self-repairing membrane-mimetic 2D nanomaterials assembled from lipid-like peptoids. Nat. Commun. 7, 12252 (2016).

    CAS  Google Scholar 

  36. 36.

    Biyani, N. et al. Focus: the interface between data collection and data processing in cryo-EM. J. Struct. Biol. 198, 124–133 (2017).

    CAS  Google Scholar 

  37. 37.

    Signorell, G. A., Kaufmann, T. C., Kukulski, W., Engel, A. & Rémigy, H.-W. Controlled 2D crystallization of membrane proteins using methyl-β-cyclodextrin. J. Struct. Biol. 157, 321–328 (2007).

    CAS  Google Scholar 

  38. 38.

    Ferro, M. et al. Organic solvent extraction as a versatile procedure to identify hydrophobic chloroplast membrane proteins. Electrophoresis 21, 3517–3526 (2000).

    CAS  Google Scholar 

  39. 39.

    Panganiban, B. et al. Random heteropolymers preserve protein function in foreign environments. Science 359, 1239–1243 (2018).

    CAS  Google Scholar 

  40. 40.

    Huang, H. B., Ying, Y. L. & Peng, X. S. Graphene oxide nanosheet: an emerging star material for novel separation membranes. J. Mater. Chem. A 2, 13772–13782 (2014).

    CAS  Google Scholar 

  41. 41.

    Peng, Y. et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

    CAS  Google Scholar 

  42. 42.

    Liu, G., Jin, W. & Xu, N. Two-dimensional-material membranes: a new family of high-performance separation membranes. Angew. Chem. Int. Edit. 55, 13384–13397 (2016).

    CAS  Google Scholar 

  43. 43.

    Nikaido, H. & Saier, M. H. Transport proteins in bacteria: common themes in their design. Science 258, 936–942 (1992).

    CAS  Google Scholar 

  44. 44.

    Niedzwiecki, D. J., Mohammad, M. M. & Movileanu, L. Inspection of the engineered FhuA ΔC/Δ4L protein nanopore by polymer exclusion. Biophys. J. 103, 2115–2124 (2012).

    CAS  Google Scholar 

  45. 45.

    Bezrukov, S. M., Vodyanoy, I., Brutyan, R. A. & Kasianowicz, J. J. Dynamics and free energy of polymers partitioning into a nanoscale pore. Macromolecules 29, 8517–8522 (1996).

    CAS  Google Scholar 

  46. 46.

    Zhang, R. et al. Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem. Soc. Rev. 45, 5888–5924 (2016).

    CAS  Google Scholar 

  47. 47.

    Jang, E.-S. et al. Influence of concentration polarization and thermodynamic non-ideality on salt transport in reverse osmosis membranes. J. Membr. Sci. 572, 668–675 (2019).

    CAS  Google Scholar 

  48. 48.

    Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982).

    CAS  Google Scholar 

  49. 49.

    Jegal, J., Min, S. G. & Lee, K. H. Factors affecting the interfacial polymerization of polyamide active layers for the formation of polyamide composite membranes. J. Appl. Polym. Sci. 86, 2781–2787 (2002).

    CAS  Google Scholar 

  50. 50.

    Dey, K. et al. Selective molecular separation by interfacially crystallized covalent organic framework thin films. J. Am. Chem. Soc. 139, 13083–13091 (2017).

    CAS  Google Scholar 

  51. 51.

    Han, G., Feng, Y., Chung, T.-S., Weber, M. & Maletzko, C. Phase inversion directly induced tight ultrafiltration (UF) hollow fiber membranes for effective removal of textile dyes. Environ. Sci. Technol. 51, 14254–14261 (2017).

    CAS  Google Scholar 

  52. 52.

    Gessmann, D. et al. Improving the resistance of a eukaryotic β-barrel protein to thermal and chemical perturbations. J. Mol. Biol. 413, 150–161 (2011).

    CAS  Google Scholar 

  53. 53.

    Hammill, J. T., Miyake-Stoner, S., Hazen, J. L., Jackson, J. C. & Mehl, R. A. Preparation of site-specifically labeled fluorinated proteins for 19 F-NMR structural characterization. Nat. Protoc. 2, 2601–2607 (2007).

    CAS  Google Scholar 

  54. 54.

    Spurr, A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43 (1969).

    CAS  Google Scholar 

  55. 55.

    Adams, M. H. Bacteriophages (Interscience, 1959).

  56. 56.

    Perunov, N. & England, J. L. Quantitative theory of hydrophobic effect as a driving force of protein structure. Protein Sci. 23, 387–399 (2014).

    CAS  Google Scholar 

  57. 57.

    Kister, A. E. & Phillips, J. C. A stringent test for hydrophobicity scales: two proteins with 88% sequence identity but different structure and function. Proc. Natl Acad. Sci. USA 105, 9233–9237 (2008).

    CAS  Google Scholar 

Download references


The authors acknowledge financial support from the National Science Foundation (NSF) CAREER grant (CBET-1552571), NSF grant CBET-1709522 and NSF grant CBET-1804836 to M.K. for this work. T.C. and E.D.G. acknowledge financial support from NSF DMR-1609417. The authors also thank M. Hazen and J. Cantolina for their help with cross-sectional sample preparation. We thank L. Movileanu for the kind gift of the plasmid for expressing the FhuA ΔC/Δ4L protein.

Author information




Y.-M.T., W.S., T.R. and M.K. conceived and designed the research. T.R., W.S., Y.-M.T., Y.-x.S. P.R., T.E.C. and L.S. performed the experiments, with the assistance of R.C., C.L., A.T., D.C., Y.D., A.M. and M.Z. in specialized analytic tools. T.R., Y.-M.T., P.R., A.P., J.N.S., S.H.M. and M.G. contributed to the protein production. Y.-M.T., W.S., T.R., R.C., T.E.C., L.S., D.B., W.A.P., E.D.G., R.J.H., Y.W. and M.K. analysed and interpreted the data and results. T.R., W.S., Y.-M.T. and M.K. co-wrote the paper.

Corresponding author

Correspondence to Manish Kumar.

Ethics declarations

Competing interests

A.P. and M.G. are employed by Applied Biomimetic, which aims to commercialize biomimetic membranes similar to those presented in this Article.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, Tables 1–5, Figures 1–19, references 1–31.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tu, YM., Song, W., Ren, T. et al. Rapid fabrication of precise high-throughput filters from membrane protein nanosheets. Nat. Mater. 19, 347–354 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing