Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator


The intricate interplay between non-trivial topology and magnetism in two-dimensional materials can lead to the emergence of interesting phenomena such as the quantum anomalous Hall effect. Here we investigate the quantum transport of both bulk crystal and exfoliated MnBi2Te4 flakes in a field-effect transistor geometry. For the six septuple-layer device tuned into the insulating regime, we observe a large longitudinal resistance and zero Hall plateau, which are characteristics of an axion insulator state. The robust axion insulator state occurs in zero magnetic field, over a wide magnetic-field range and at relatively high temperatures. Moreover, a moderate magnetic field drives a quantum phase transition from the axion insulator phase to a Chern insulator phase with zero longitudinal resistance and quantized Hall resistance h/e2, where h is Planck’s constant and e is electron charge. Our results pave the way for using even-number septuple-layer MnBi2Te4 to realize the quantized topological magnetoelectric effect and axion electrodynamics in condensed matter systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Transport characterization of MnBi2Te4 single crystal.
Fig. 2: Characterization of a six-SL MnBi2Te4 device.
Fig. 3: Gate-dependent transport properties and the magnetic-field-driven axion insulator to Chern insulator transition.
Fig. 4: Temperature evolution and quantum critical behaviour of the axion insulator to Chern insulator transition.

Data availability

All raw and derived data used to support the findings of this work are available from the authors on request.


  1. 1.

    Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

  2. 2.

    Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014).

  3. 3.

    Kou, X. et al. Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett. 113, 137201 (2014).

  4. 4.

    Chang, C. Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015).

  5. 5.

    Liu, M. et al. Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator. Sci. Adv. 2, e1600167 (2016).

  6. 6.

    Grauer, S. et al. Scaling of the quantum anomalous Hall effect as an indicator of axion electrodynamics. Phys. Rev. Lett. 118, 246801 (2017).

  7. 7.

    Qi, X. L., Hughes, T. L. & Zhang, S. C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

  8. 8.

    Wilczek, F. Two applications of axion electrodynamics. Phys. Rev. Lett. 58, 1799–1802 (1987).

  9. 9.

    Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).

  10. 10.

    Nomura, K. & Nagaosa, N. Surface-quantized anomalous Hall current and the magnetoelectric effect in magnetically disordered topological insulators. Phys. Rev. Lett. 106, 166802 (2011).

  11. 11.

    Morimoto, T., Furusaki, A. & Nagaosa, N. Topological magnetoelectric effects in thin films of topological insulators. Phys. Rev. B 92, 085113 (2015).

  12. 12.

    Wang, J., Lian, B., Qi, X. L. & Zhang, S. C. Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state. Phys. Rev. B 92, 081107 (2015).

  13. 13.

    Mogi, M. et al. A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat. Mater. 16, 516–521 (2017).

  14. 14.

    Mogi, M. et al. Tailoring tricolor structure of magnetic topological insulator for robust axion insulator. Sci. Adv. 3, eaao1669 (2017).

  15. 15.

    Xiao, D. et al. Realization of the axion insulator state in quantum anomalous Hall sandwich heterostructures. Phys. Rev. Lett. 120, 056801 (2018).

  16. 16.

    Li, J. et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 5, eaaw5685 (2019).

  17. 17.

    Zhang, D. et al. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett. 122, 206401 (2019).

  18. 18.

    Gong, Y. et al. Experimental realization of an intrinsic magnetic topological insulator. Chin. Phys. Lett. 36, 076801 (2019).

  19. 19.

    Otrokov, M. M. et al. Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects. 2D Mater. 4, 025082 (2017).

  20. 20.

    Otrokov, M. M. et al. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett. 122, 107202 (2019).

  21. 21.

    Otrokov M. M. et al. Prediction and observation of the first antiferromagnetic topological insulator. Preprint at (2018).

  22. 22.

    Zeugner, A. et al. Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4. Chem. Mater. 31, 2795–2806 (2019).

  23. 23.

    Lee, S. H. et al. Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. Res. 1, 012011 (2019).

  24. 24.

    Chen, B. et al. Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes. Nat. Commun. 10, 4469 (2019).

  25. 25.

    Cui, J. H. et al. Transport properties of thin flakes of the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B 99, 155125 (2019).

  26. 26.

    Yan, J. Q. et al. Crystal growth and magnetic structure of MnBi2Te4. Phys. Rev. Mater. 3, 064202 (2019).

  27. 27.

    Lee, D. S. et al. Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi2MnTe4. Crystengcomm 15, 5532–5538 (2013).

  28. 28.

    Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212 (2015).

  29. 29.

    Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

  30. 30.

    Suzuki, T. et al. Large anomalous Hall effect in a half-Heusler antiferromagnet. Nat. Phys. 12, 1119–1123 (2016).

  31. 31.

    Liu, C. et al. Dimensional crossover-induced topological Hall effect in a magnetic topological insulator. Phys. Rev. Lett. 119, 176809 (2017).

  32. 32.

    Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

  33. 33.

    Wang, Z. et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 9, 1–8 (2018).

  34. 34.

    Sun, Z. et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 572, 497–501 (2019).

  35. 35.

    Wong, L. W., Jiang, H. W., Trivedi, N. & Palm, E. Disorder-tuned transition between a quantum Hall liquid and Hall insulator. Phys. Rev. B 51, 18033–18036 (1995).

  36. 36.

    Shahar, D., Tsui, D. C., Shayegan, M., Bhatt, R. N. & Cunningham, J. E. Universal conductivity at the quantum Hall liquid to insulator transition. Phys. Rev. Lett. 74, 4511–4514 (1995).

  37. 37.

    Pan, W., Shahar, D., Tsui, D. C., Wei, H. P. & Razeghi, M. Quantum Hall liquid-to-insulator transition in In1-xGaxAs/InP heterostructures. Phys. Rev. B 55, 15431–15433 (1997).

  38. 38.

    Leng, X., Garcia-Barriocanal, J., Bose, S., Lee, Y. & Goldman, A. M. Electrostatic control of the evolution from a superconducting phase to an insulating phase in ultrathin YBa2CaCu3O7-x films. Phys. Rev. Lett. 107, 027001 (2011).

  39. 39.

    Deng Y. et al Magnetic-field-induced quantized anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Preprint at (2019).

  40. 40.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

  41. 41.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

  42. 42.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396–1396 (1997).

  43. 43.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

Download references


We thank W. Duan, S. Fan, X. Feng, Z. Hao, L. Yang and S. Ye for helpful discussions and technical supports. This work is supported by the Basic Science Centre Project of NSFC (grant no. 51788104), the National Key R&D Program of China (grant nos. 2018YFA0307100, 2017YFA0302900 and 2018YFA0305603), MOST of China (grant no. 2015CB921000) and Natural Science Foundation of China (grant nos. 51991343 and 21975140). This work is also partially supported by the Beijing Advanced Innovation Centre for Future Chip (ICFC).

Author information

Y.Y.W., J.S.Z., Y.X. and K.H. proposed the research and Y.Y.W. supervised. C.L. and Y.X.L. carried out the transport measurements. Y.C.W. fabricated and characterized the devices. H.L. and Y.W. grew the MnBi2Te4 bulk crystals. Y.X. and J.H.L. performed first-principles calculations. Y.Y.W., J.S.Z., Y.X. and C.L. prepared the manuscript with comments from all authors.

Correspondence to Yong Xu or Jinsong Zhang or Yayu Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and discussions.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Wang, Y., Li, H. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. (2020).

Download citation

Further reading