Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multi-messenger nanoprobes of hidden magnetism in a strained manganite


The ground-state properties of correlated electron systems can be extraordinarily sensitive to external stimuli, offering abundant platforms for functional materials. Using the multi-messenger combination of atomic force microscopy, cryogenic scanning near-field optical microscopy, magnetic force microscopy and ultrafast laser excitation, we demonstrate both ‘writing’ and ‘erasing’ of a metastable ferromagnetic metal phase in strained films of La2/3Ca1/3MnO3 (LCMO) with nanometre-resolved finesse. By tracking both optical conductivity and magnetism at the nanoscale, we reveal how strain-coupling underlies the dynamic growth, spontaneous nanotexture and first-order melting transition of this hidden photoinduced metal. Our first-principles calculations reveal that epitaxially engineered Jahn–Teller distortion can stabilize nearly degenerate antiferromagnetic insulator and ferromagnetic metal phases. We propose a Ginzburg–Landau description to rationalize the co-active interplay of strain, lattice distortions and magnetism nano-resolved here in strained LCMO, thus guiding future functional engineering of epitaxial oxides into the regime of phase-programmable materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Nano-imaging of photoinduced ferromagnetic metal in epitaxial LCMO.
Fig. 2: Strain-mediated suppression of hidden ferromagnetism.
Fig. 3: Co-active growth of photoinduced ferromagnetic metallic domains.
Fig. 4: Thermal melting of the photoinduced ferromagnetic metal.
Fig. 5: Nanoscale erasure of photoinduced metallicity.

Data availability

Data presented in this work will be made available upon request.


  1. 1.

    Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    CAS  Article  Google Scholar 

  2. 2.

    Averitt, R. D. & Taylor, A. J. Ultrafast optical and far-infrared quasiparticle dyanmics in correlated electron materials. J. Phys. Condens. Matter 14, R1357–R1390 (2002).

    Article  CAS  Google Scholar 

  3. 3.

    Zhang, J. & Averitt, R. D. Dynamics and control in complex transition metal oxides. Annu. Rev. Mater. Res. 44, 19–43 (2014).

    Article  CAS  Google Scholar 

  4. 4.

    Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    Article  CAS  Google Scholar 

  5. 5.

    Nagaosa, N. & Tokura, Y. Orbital physics in transition-metal oxides. Science 288, 462 (2000).

    Article  Google Scholar 

  6. 6.

    Burgy, J., Moreo, A. & Dagotto, E. Relevance of cooperative lattice effects and stress fields in phase-separation theories for CMR manganites. Phys. Rev. Lett. 92, 97202 (2004).

    Article  CAS  Google Scholar 

  7. 7.

    Ahn, K. H., Lookman, T. & Bishop, A. R. Strain-induced metal–insulator phase coexistence in perovskite manganites. Nature 428, 401–404 (2004).

    Article  CAS  Google Scholar 

  8. 8.

    Ichikawa, H. et al. Transient photoinduced ‘hidden’ phase in a manganite. Nat. Mater. 10, 101–105 (2011).

    Article  CAS  Google Scholar 

  9. 9.

    Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).

    Article  CAS  Google Scholar 

  10. 10.

    Pagliari, L. et al. Strain heterogeneity and magnetoelastic behaviour of nanocrystalline half-doped La, Ca manganite, La0.5Ca0.5MnO3. J. Phys. Condens. Matter 26, 435303 (2014).

    Article  CAS  Google Scholar 

  11. 11.

    Li, X. G. et al. Jahn–Teller effect and stability of the charge-ordered state in La1 − xCaxMnO3 (0.5 ≤ x ≤ 0.9) manganites. Europhys. Lett. 60, 670–676 (2002).

    Article  CAS  Google Scholar 

  12. 12.

    Salje, E. K. H. Ferroelastic materials. Annu. Rev. Mater. Res. 42, 265–283 (2012).

    Article  CAS  Google Scholar 

  13. 13.

    Zhang, J. et al. Cooperative photoinduced metastable phase control in strained manganite films. Nat. Mater. 15, 956–960 (2016).

    Article  CAS  Google Scholar 

  14. 14.

    Huang, Z. et al. Tuning the ground state of La0.67Ca0.33MnO3 films via coherent growth on orthorhombic NdGaO3 substrates with different orientations. Phys. Rev. B 86, 1–8 (2012).

    Google Scholar 

  15. 15.

    Zhang, L., Israel, C., Biswas, A., Greene, R. L. & De Lozanne, A. Direct observation of percolation in a manganite thin film. Science 298, 805–807 (2002).

    Article  CAS  Google Scholar 

  16. 16.

    Lai, K. et al. Mesoscopic percolating resistance network in a strained manganite thin film. Science 329, 190–193 (2010).

    Article  CAS  Google Scholar 

  17. 17.

    Uehara, M., Mori, S., Chen, C. H. & Cheong, S. W. Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 399, 560–563 (1999).

    Article  CAS  Google Scholar 

  18. 18.

    Dagotto, E. Nanoscale Phase Separation and Colossal Magnetoresistance (Springer, 2002).

  19. 19.

    Wu, W. et al. Magnetic imaging of a supercooling glass transition in a weakly disordered ferromagnet. Nat. Mater. 5, 881–886 (2006).

    Article  CAS  Google Scholar 

  20. 20.

    Zhou, H. et al. Evolution and control of the phase competition morphology in a manganite film. Nat. Commun. 6, 8980 (2015).

    Article  CAS  Google Scholar 

  21. 21.

    Huang, Z. et al. Phase evolution and the multiple metal–insulator transitions in epitaxially shear-strained La0.67Ca0.33MnO3/NdGaO3(001) films. J. Appl. Phys. 108, 83912 (2010).

    Article  CAS  Google Scholar 

  22. 22.

    Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method. J. Phys. Condens. Matter 9, 767–808 (1997).

    Article  CAS  Google Scholar 

  23. 23.

    Carpenter, M. A. & Howard, C. J. Symmetry rules and strain/order-parameter relationships for coupling between octahedral tilting and cooperative Jahn–Teller transitions in ABX 3 perovskites. II. Application. Acta Crystallogr. B 65, 147–159 (2009).

    Article  CAS  Google Scholar 

  24. 24.

    Zhou et al. Effect of tolerance factor and local distortion on magnetic properties of the perovskite manganites. Appl. Phys. Lett. 75, 1146 (1999).

    Article  CAS  Google Scholar 

  25. 25.

    Tokura, Y. Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 69, 797–851 (2006).

    Article  CAS  Google Scholar 

  26. 26.

    Hwang, H. Y., Cheong, S. W., Radaelli, P. G., Marezio, M. & Batlogg, B. Lattice effects on the magnetoresistance in doped LaMnO3. Phys. Rev. Lett. 75, 914–917 (1995).

    Article  CAS  Google Scholar 

  27. 27.

    Milward, G. C., Calderón, M. J. & Littlewood, P. B. Electronically soft phases in manganites. Nature 433, 607–610 (2005).

    Article  CAS  Google Scholar 

  28. 28.

    McLeod, A. S. et al. Nanotextured phase coexistence in the correlated insulator V2O3. Nat. Phys. 13, 80–86 (2017).

    Article  CAS  Google Scholar 

  29. 29.

    Liu, M. K. et al. Anisotropic electronic state via spontaneous phase separation in strained vanadium dioxide films. Phys. Rev. Lett. 111, 096602 (2013).

    Article  CAS  Google Scholar 

  30. 30.

    Furukawa, N. Temperature dependence of conductivity in (La, Sr)MnO3. J. Phys. Soc. Jpn 64, 3164–3167 (1995).

    Article  CAS  Google Scholar 

  31. 31.

    Millis, A. J., Darling, T. & Migliori, A. Quantifying strain dependence in ‘colossal’ magnetoresistance manganites. J. Appl. Phys. 83, 1588–1591 (1998).

    Article  CAS  Google Scholar 

  32. 32.

    Rao, R. A. et al. Three-dimensional strain states and crystallographic domain structures of epitaxial colossal magnetoresistive La0.8Ca0.2MnO3 thin films. Appl. Phys. Lett. 73, 3294–3296 (1998).

    Article  CAS  Google Scholar 

  33. 33.

    Millis, A. J. Lattice effects in magnetoresistive manganese perovskites. Nature 392, 147–150 (1998).

    Article  CAS  Google Scholar 

  34. 34.

    Post, K. W. et al. Coexisting first- and second-order electronic phase transitions in a correlated oxide. Nat. Phys. 14, 1056–1061 (2018).

    Article  CAS  Google Scholar 

  35. 35.

    Salje, E. Phase transitions in ferroelastic and co-elastic crystals. Ferroelectrics 104, 111–120 (1990).

    Article  CAS  Google Scholar 

  36. 36.

    Tselev, A. et al. Interplay between ferroelastic and metal–insulator phase transitions in strained quasi-two-dimensional VO2 nanoplatelets. Nano Lett. 10, 2003–2011 (2010).

    Article  CAS  Google Scholar 

  37. 37.

    Xiong, C. M., Sun, J. R. & Shen, B. G. Dependence of magnetic anisotropy of the La0.67Ca0.33MnO3 films on substrate and film thickness. Solid State Commun. 134, 465–469 (2005).

    Article  CAS  Google Scholar 

  38. 38.

    Liu, M. et al. Phase transition in bulk single crystals and thin films of VO2 by nanoscale infrared spectroscopy and imaging. Phys. Rev. B 91, 245155 (2015).

    Article  CAS  Google Scholar 

  39. 39.

    Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

    Article  CAS  Google Scholar 

  40. 40.

    Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).

    Article  CAS  Google Scholar 

  41. 41.

    Mitrano, M. et al. Possible light-induced superconductivity in K3 C60 at high temperature. Nature 530, 461–464 (2016).

    Article  CAS  Google Scholar 

  42. 42.

    Yang, H. U., Hebestreit, E., Josberger, E. E. & Raschke, M. B. A cryogenic scattering-type scanning near-field optical microscope. Rev. Sci. Instrum. 84, 23701–101124 (2013).

    Article  CAS  Google Scholar 

  43. 43.

    Qazilbash, M. M. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750 (2007).

    Article  CAS  Google Scholar 

  44. 44.

    Atkin, J. M., Berweger, S., Jones, A. C. & Raschke, M. B. Nano-optical imaging and spectroscopy of order, phases and domains in complex solids. Adv. Phys. 61, 745–842 (2012).

    Article  CAS  Google Scholar 

  45. 45.

    Landau, L. D. & Lifshitz, E. M. Theory of Elasticity (Course of Theoretical Physics Vol. 7, Pergamon Press, 1970).

  46. 46.

    Hartmann, U. Magnetic force microscopy. Annu. Rev. Mater. Sci. 29, 53–87 (1999).

    Article  CAS  Google Scholar 

  47. 47.

    Alnaes, M. S. et al. The FEniCS Project Version 1.5. Arch. Numer. Softw. 3, 9–23 (2015).

    Google Scholar 

  48. 48.

    Eshelby, J. D. The continuum theory of lattice defects. Solid State Phys. Adv. Res. Appl. 3, 79–144 (1956).

    CAS  Google Scholar 

  49. 49.

    Hertz, H. Ueber die Beruehrung fester elastischer Koerper. J. für die Reine und Angew. Math. 91, 156–171 (1882).

    Google Scholar 

Download references


Multi-messenger nano-imaging capabilities were developed with support from Programmable Quantum Materials, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award no. DE-SC0019443. Research on the phase transition in correlated oxides was supported by the US DOE-BES award no. DE-SC-0012375. F.J. and W.W. acknowledge support from the NSF of China (grant no. 11974326), the National key R&D Program of China (grant no. 2016YFA0401003) and Hefei Science Center CAS.

Author information




A.S.M., J.Z., R.D.A. and D.N.B. conceived the experiments. F.J., X.G.Z. and W.W. provided the samples used in the experiments. G.Z. and K.W.P. provided instrumental support. A.S.M. and J.Z. carried out the nano-imaging and supplementary experiments. M.Q.G., A.J.M. and J.M.R. provided theoretical calculations and support with data analysis. A.S.M. and J.Z. wrote the manuscript with input from all coauthors.

Corresponding authors

Correspondence to A. S. McLeod or Jingdi Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Tables 1–3, notes 1–11 and refs. 1–20.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McLeod, A.S., Zhang, J., Gu, M.Q. et al. Multi-messenger nanoprobes of hidden magnetism in a strained manganite. Nat. Mater. 19, 397–404 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing