Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction

Abstract

Natural self-assembled three-dimensional photonic crystals such as blue-phase liquid crystals typically assume cubic lattice structures. Nonetheless, blue-phase liquid crystals with distinct crystal symmetries and thus band structures will be advantageous for optical applications. Here we use repetitive electrical pulses to reconfigure blue-phase liquid crystals into stable orthorhombic and tetragonal lattices. This approach, termed repetitively applied field, allows the system to relax between each pulse, gradually transforming the initial cubic lattice into various intermediate metastable states until a stable non-cubic crystal is achieved. We show that this technique is suitable for engineering non-cubic lattices with tailored photonic bandgaps, associated dispersion and band structure across the entire visible spectrum in blue-phase liquid crystals with distinct composition and initial crystal orientation. These field-free blue-phase liquid crystals exhibit large electro-optic responses and can be polymer-stabilized to have a wide operating temperature range and submillisecond response speed, which are promising properties for information display, electro-optics, nonlinear optics, microlasers and biosensing applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Electrostriction dynamics of BPLCs.
Fig. 2: Electrostriction dynamics in BPI and the strategy to produce enhanced crystalline distortion.
Fig. 3: RAF electrical treatment.
Fig. 4: Optical characterizations and stability of RAF-treated BPLCs of different pitches.
Fig. 5: Control of lattice non-cubicity.
Fig. 6: Polymer-stabilized non-cubic blue phases.

Data availability

The data that support the findings of this study are available within the article and its supplementary information files and from the corresponding authors upon reasonable request.

References

  1. 1.

    Rinne, S. A., García-Santamaría, F. & Braun, P. V. Embedded cavities and waveguides in three-dimensional silicon photonic crystals. Nat. Photonics 2, 52–56 (2007).

    Google Scholar 

  2. 2.

    Yoshida, M. et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams. Nat. Mater. 18, 121–128 (2019).

    CAS  Google Scholar 

  3. 3.

    Ishizaki, K. & Noda, S. Manipulation of photons at the surface of three-dimensional photonic crystals. Nature 460, 367–370 (2009).

    CAS  Google Scholar 

  4. 4.

    Hynninen, A.-P., Thijssen, J. H. J., Vermolen, E. C. M., Dijkstra, M. & van Blaaderen, A. Self-assembly route for photonic crystals with a bandgap in the visible region. Nat. Mater. 6, 202–205 (2007).

    CAS  Google Scholar 

  5. 5.

    Honda, M., Seki, T. & Takeoka, Y. Dual tuning of the photonic band-gap structure in soft photonic crystals. Adv. Mater. 21, 1801–1804 (2009).

    CAS  Google Scholar 

  6. 6.

    Hou, J. et al. Bio‐inspired photonic‐crystal microchip for fluorescent ultratrace detection. Angew. Chem. Int. Ed. 53, 5791–5795 (2014).

    CAS  Google Scholar 

  7. 7.

    Zhao, Y., Xie, Z., Gu, H., Zhu, C. & Gu, Z. Bio-inspired variable structural color materials. Chem. Soc. Rev. 41, 3297–3317 (2012).

    CAS  Google Scholar 

  8. 8.

    Lopez-Garcia, M. et al. Light-induced dynamic structural color by intracellular 3D photonic crystals in brown algae. Sci. Adv. 4, eaan8917 (2018).

    Google Scholar 

  9. 9.

    Kang, Y., Walish, J. J., Gorishnyy, T. & Thomas, E. L. Broad-wavelength-range chemically tunable block-copolymer photonic gels. Nat. Mater. 6, 957–960 (2007).

    CAS  Google Scholar 

  10. 10.

    Fang, Y. et al. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers. Nat. Commun. 6, 7416 (2015).

    CAS  Google Scholar 

  11. 11.

    Turner, M. D. et al. Miniature chiral beamsplitter based on gyroid photonic crystals. Nat. Photonics 7, 801–805 (2013).

    CAS  Google Scholar 

  12. 12.

    Chen, C.-W. et al. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases. Nat. Commun. 8, 727 (2017).

    Google Scholar 

  13. 13.

    Tanaka, S. et al. Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy. Sci. Rep. 5, 16180 (2015).

    Google Scholar 

  14. 14.

    Heppke, G., Jerome, B., Kitzerow, H.-S. & Pieranski, P. Electrostriction of the cholesteric blue phases BPI and BPII in mixtures with positive dielectric anisotropy. J. de. Phys. 50, 2991–2998 (1989).

    CAS  Google Scholar 

  15. 15.

    Lin, T.-H. et al. Red, green and blue reflections enabled in an optically tunable self-organized 3D cubic nanostructured thin film. Adv. Mater. 25, 5050–5054 (2013).

    CAS  Google Scholar 

  16. 16.

    Martínez-González, J. A. et al. Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals. Nat. Commun. 8, 15854 (2017).

    Google Scholar 

  17. 17.

    Wang, M. et al. Asymmetric tunable photonic bandgaps in self‐organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity. Adv. Funct. Mater. 27, 1702261 (2017).

    Google Scholar 

  18. 18.

    Cao, W., Muñoz, A., Palffy-Muhoray, P. & Taheri, B. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II. Nat. Mater. 1, 111–113 (2002).

    CAS  Google Scholar 

  19. 19.

    Khoo, I. C., Hong, K. L., Zhao, S., Ma, D. & Lin, T.-H. Blue-phase liquid crystal cored optical fiber array with photonic bandgaps and nonlinear transmission properties. Opt. Express 21, 4319–4328 (2013).

    CAS  Google Scholar 

  20. 20.

    Lee, M.-J., Chang, C.-H. & Lee, W. Label-free protein sensing by employing blue phase liquid crystal. Biomed. Opt. Express 8, 1712–1720 (2017).

    CAS  Google Scholar 

  21. 21.

    Hisakado, Y., Kikuchi, H., Nagamura, T. & Kajiyama, T. Large electro-optic kerr effect in polymer-stabilized liquid-crystalline blue phases. Adv. Mater. 17, 96–98 (2005).

    CAS  Google Scholar 

  22. 22.

    Kitzerow, H.-S. The effect of electric fields on blue phases. Mol. Cryst. Liq. Cryst. 202, 51–83 (1991).

    CAS  Google Scholar 

  23. 23.

    Fukuda, J. & Žumer, S. Quasi-two-dimensional Skyrmion lattices in a chiral nematic liquid crystal. Nat. Commun. 2, 246 (2011).

    Google Scholar 

  24. 24.

    Fukuda, J. & Žumer, S. Novel defect structures in a strongly confined liquid-crystalline blue phase. Phys. Rev. Lett. 104, 017801 (2010).

    Google Scholar 

  25. 25.

    Nych, A., Fukuda, J., Ognysta, U., Žumer, S. & Muševič, I. Spontaneous formation and dynamics of half-skyrmions in a chiral liquid-crystal film. Nat. Phys. 13, 1215–1220 (2017).

    CAS  Google Scholar 

  26. 26.

    Wang, S., Ravnik, M. & Žumer, S. Surface-patterning generated half-skyrmion lattices in cholesteric blue phase thin films. Liq. Cryst. 45, 2329–2340 (2018).

    CAS  Google Scholar 

  27. 27.

    Fukuda, J., Yoneya, M. & Yokoyama, H. Simulation of cholesteric blue phases using a Landau–de Gennes theory: effect of an applied electric field. Phys. Rev. E 80, 031706 (2009).

    Google Scholar 

  28. 28.

    Tiribocchi, A., Gonnella, G., Marenduzzo, D., Orlandini, E. & Salvadore, F. Bistable defect structures in blue phase devices. Phys. Rev. Lett. 107, 237803 (2011).

    CAS  Google Scholar 

  29. 29.

    Tiribocchi, A., Gonnella, G., Marenduzzo, D. & Orlandini, E. Switching dynamics in cholesteric blue phases. Soft Matter 7, 3295–3306 (2011).

    CAS  Google Scholar 

  30. 30.

    Alexander, G. P. & Yeomans, J. M. Numerical results for the blue phases. Liq. Cryst. 36, 1215–1227 (2009).

    CAS  Google Scholar 

  31. 31.

    Hornreich, R. M., Shtrikman, S. & Sommers, C. Photonic bands in simple and body-centered-cubic cholesteric blue phases. Phys. Rev. E 47, 2067–2072 (1993).

    CAS  Google Scholar 

  32. 32.

    Etchegoin, P. Blue phases of cholesteric liquid crystals as thermotropic photonic crystals. Phys. Rev. E 62, 1435–1437 (2000).

    CAS  Google Scholar 

  33. 33.

    Pieranski, P. & Cladis, P. E. Field-induced tetragonal blue phase (BP X). Phys. Rev. A 35, 355–364 (1987).

    CAS  Google Scholar 

  34. 34.

    Tone, H., Yoshida, H., Yabu, S., Ozaki, M. & Kikuchi, H. Effect of anisotropic lattice deformation on the Kerr coefficient of polymer-stabilized blue-phase liquid crystals. Phys. Rev. E 89, 012506 (2014).

    Google Scholar 

  35. 35.

    Cladis, P. E., Garel, T. & Pieranski, P. Kossel diagrams show electric-field-induced cubic-tetragonal structural transition in frustrated liquid-crystal blue phases. Phys. Rev. Lett. 57, 2841–2844 (1986).

    CAS  Google Scholar 

  36. 36.

    Castles, F. et al. Stretchable liquid-crystal blue-phase gels. Nat. Mater. 13, 817–821.

    CAS  Google Scholar 

  37. 37.

    Yoshida, H. et al. Secondary electro-optic effect in liquid crystalline cholesteric blue phases. Opt. Mater. Express 4, 960–968 (2014).

    Google Scholar 

  38. 38.

    Wang, C.-T., Liu, H.-Y., Cheng, H.-H. & Lin, T.-H. Bistable effect in the liquid crystal blue phase. Appl. Phys. Lett. 96, 041106 (2010).

    Google Scholar 

  39. 39.

    Miller, R. J. & Gleeson, H. F. Lattice parameter measurements from the Kossel diagrams of the cubic liquid crystal blue phases. J. de. Phys. II 6, 909–922 (1996).

    CAS  Google Scholar 

  40. 40.

    Kitzerow, H. S., Crooker, P. P., Kwok, S. L., Xu, J. & Heppke, G. Dynamics of blue-phase selective reflections in an electric field. Phys. Rev. A 42, 3442–3448 (1990).

    CAS  Google Scholar 

  41. 41.

    Li, Y. et al. Dielectric dispersion on the Kerr constant of blue phase liquid crystals. Appl. Phys. Lett. 99, 181126 (2011).

    Google Scholar 

  42. 42.

    Sahoo, R., Chojnowska, O., Dabrowski, R. & Dhara, S. Experimental studies on the rheology of cubic blue phases. Soft Matter 12, 1324–1329 (2016).

    CAS  Google Scholar 

  43. 43.

    Cladis, P. E., Pieranski, P. & Joanicot, M. Elasticity of blue phase I of cholesteric liquid crystals. Phys. Rev. Lett. 52, 542–545 (1984).

    CAS  Google Scholar 

  44. 44.

    Gerber, P. R. Electro-optical effects of a small-pitch blue-phase system. Mol. Cryst. Liq. Cryst. 116, 197–206 (1985).

    CAS  Google Scholar 

  45. 45.

    Kikuchi, H., Yokota, M., Hisakado, Y., Yang, H. & Kajiyama, T. Polymer-stabilized liquid crystal blue phases. Nat. Mater. 1, 64–68 (2002).

    CAS  Google Scholar 

  46. 46.

    Kikuchi, H., Izena, S., Higuchi, H., Okumura, Y. & Higashiguchi, K. A giant polymer lattice in a polymer-stabilized blue phase liquid crystal. Soft Matter 11, 4572–4575 (2015).

    CAS  Google Scholar 

  47. 47.

    Li, X. et al. Mesoscale martensitic transformation in single crystals of topological defects. Proc. Natl Acad. Sci. USA 114, 10011–10016 (2017).

    CAS  Google Scholar 

  48. 48.

    Soljačić, M. & Joannopoulos, J. D. Enhancement of nonlinear effects using photonic crystals. Nat. Mater. 3, 211–219 (2004).

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Asian Office of Aerospace Research and Development (AOARD), Air Force Office of Scientific Research (AFOSR), grant no. FA2386-18-1-4039; work at NSYSU was partially supported by the Ministry of Science and Technology of Taiwan, grant no. MOST 106-2112-M-110-003-MY3; work at PSU was supported by a grant from the Air Force Research Laboratory and the W. E. Leonhard Chair Professorship.

Author information

Affiliations

Authors

Contributions

T.-H.L., I.C.K. and T.J.B. identified the significance of this work. C.-W.C. and C.-C.L. conducted the initial feasibility experiments. D.-Y.G. carried out the detailed experimental study with assistance from K.-H.L., T.-M.F., H.-C.J. and C.-T.W. C.-W.C. performed the data analysis with assistance from D.-Y.G. and under the supervision of I.C.K. and T.-H.L. All authors participated in discussion. C.-W.C., I.C.K., D.-Y.G., T.J.B. and T.-H.L. authored the manuscript.

Corresponding authors

Correspondence to Iam Choon Khoo or Tsung-Hsien Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–10, Figs. 1–9, references and Supplementary Video 1 legend.

Supplementary Video 1

Kossel diffraction pattern evolution of a blue-phase I liquid crystal through cubic, orthorhombic and tetragonal symmetry.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, DY., Chen, CW., Li, CC. et al. Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction. Nat. Mater. 19, 94–101 (2020). https://doi.org/10.1038/s41563-019-0512-3

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing