Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enhancement of thermoelectric performance across the topological phase transition in dense lead selenide

Abstract

Alternative technologies are required in order to meet a worldwide demand for clean non-polluting energy sources. Thermoelectric generators, which generate electricity from heat in a compact and reliable manner, are potential devices for waste heat recovery. However, thermoelectric performance, as encapsulated by the figure of merit ZT, has remained at around 1.0 at room temperature, which has limited practical applications. Here, we study the effects of pressure on ZT in Cr-doped PbSe, which has a maximum ZT of less than 1.0 at a temperature of about 700 K. By applying external pressure using a diamond anvil cell, we obtained a room-temperature ZT value of about 1.7. From thermoelectric, magnetoresistance and Raman measurements, as well as density functional theory calculations, a pressure-driven topological phase transition is found to enable this enhancement. Experiments also support the appearance of a topological crystalline insulator after the transition. These findings point to the possibility of using compression to increase not just ZT in existing thermoelectric materials, but also the possibility of realizing topological crystalline insulators.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The dimensionless figure of merit ZT of Pb0.99Cr0.01Se.
Fig. 2: The electrical resistivity and conductivity of Pb0.99Cr0.01Se at high pressures.
Fig. 3: The Seebeck coefficient and power factor of Pb0.99Cr0.01Se at high pressures.
Fig. 4: Band structure and TCI state in Pb0.99Cr0.01Se under pressure.
Fig. 5: The thermal conductivity of Pb0.99Cr0.01Se at high pressures.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

All the codes created for the analysis of the data are from the open-source software packages which are cited in the references of this paper.

References

  1. 1.

    Chen, G., Dresselhaus, M. S., Dresselhaus, G., Fleurial, J. P. & Cailla, T. Recent developments in thermoelectric materials. Int. Mater. Rev. 48, 45–66 (2003).

    CAS  Google Scholar 

  2. 2.

    Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–144 (2008).

    CAS  Google Scholar 

  3. 3.

    Ren, Z. F., Lan, Y. C. & Zhang, Q. Y. Advanced Thermoelectrics: Materials, Contacts, Devices, and System (CRC Press, 2017).

  4. 4.

    Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    CAS  Google Scholar 

  5. 5.

    Pei, Y. Z., Heinz, N. A., LaLonde, A. & Snyder, G. J. Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride. Energy Environ. Sci. 4, 3640–3645 (2011).

    CAS  Google Scholar 

  6. 6.

    Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).

    CAS  Google Scholar 

  7. 7.

    Hsu, K. F. et al. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303, 818–821 (2004).

    CAS  Google Scholar 

  8. 8.

    Heremans, J. P. et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008).

    CAS  Google Scholar 

  9. 9.

    Pei, Y. Z. et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011).

    CAS  Google Scholar 

  10. 10.

    Liu, H. et al. Copper ion liquid-like thermoelectrics. Nat. Mater. 11, 422–425 (2012).

    Google Scholar 

  11. 11.

    Zhu, T. J. et al. Hot deformation induced bulk nanostructuring of unidirectionally grown p-type (Bi,Sb)2Te3 thermoelectric materials. J. Mater. Chem. A 1, 11589–11594 (2013).

    CAS  Google Scholar 

  12. 12.

    Wright, D. A. Thermoelectric properties of bismuth telluride and its alloys. Nature 181, 834–834 (1958).

    Google Scholar 

  13. 13.

    Zhao, W. et al. Superparamagnetic enhancement of thermoelectric performance. Nature 549, 247–251 (2017).

    CAS  Google Scholar 

  14. 14.

    Rhyee, J. S. et al. Peierls distortion as a route to high thermoelectric performance in In4Se3−δ crystals. Nature 459, 965–968 (2009).

    CAS  Google Scholar 

  15. 15.

    Polvani, D. A., Meng, J. F., Chandra Shekar, N. V., Sharp, J. & Badding, J. V. Large improvement in thermoelectric properties in pressure-tuned p-type Sb1.5Bi0.5Te3. Chem. Mater. 13, 2068–2071 (2001).

    CAS  Google Scholar 

  16. 16.

    Shchennikov, V. V., Ovsyannikov, S. V. & Derevskov, A. Y. Thermopower of lead chalcogenides at high pressures. Phys. Solid State 44, 1845–1849 (2002).

    CAS  Google Scholar 

  17. 17.

    Yu, H. et al. Impressive enhancement of thermoelectric performance in CuInTe2 upon compression. Mater. Today Phys. 5, 1–5 (2018).

    CAS  Google Scholar 

  18. 18.

    Chen, L. C. et al. Pressure-induced enhancement of thermoelectric performance in palladium sulfide. Mater. Today Phys. 5, 64–71 (2018).

    Google Scholar 

  19. 19.

    Parker, D. & Singh, D. J. High-temperature thermoelectric performance of heavily doped PbSe. Phys. Rev. B 82, 035204 (2010).

    Google Scholar 

  20. 20.

    Androulakis, J. et al. High-temperature thermoelectric properties of n-type PbSe doped with Ga, In, and Pb. Phys. Rev. B 83, 195209 (2011).

    Google Scholar 

  21. 21.

    Lee, Y. et al. Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide. Nat. Commun. 5, 3640 (2014).

    CAS  Google Scholar 

  22. 22.

    Wang, H., Pei, Y. Z., LaLonde, A. D. & Snyder, G. J. Heavily doped p-type PbSe with high thermoelectric performance: an alternative for PbTe. Adv. Mater. 23, 1366–1370 (2011).

    CAS  Google Scholar 

  23. 23.

    Wang, H., Gibbs, Z. M., Takagiwa, Y. & Snyder, G. J. Tuning bands of PbSe for better thermoelectric efficiency. Energy Environ. Sci. 7, 804–811 (2014).

    CAS  Google Scholar 

  24. 24.

    Zhang, Q. et al. Study of the thermoelectric properties of lead selenide doped with boron, gallium, indium, or thallium. J. Am. Chem. Soc. 134, 17731–17738 (2012).

    CAS  Google Scholar 

  25. 25.

    Zhang, Q. Y. et al. Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide. Energy Environ. Sci. 5, 5246–5251 (2012).

    CAS  Google Scholar 

  26. 26.

    Zhang, Q. et al. Enhancement of thermoelectric performance of n-type PbSe by Cr doping with optimized carrier concentration. Adv. Energy Mater. 5, 1401977 (2015).

    Google Scholar 

  27. 27.

    Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

    Google Scholar 

  28. 28.

    Hsieh, T. H. et al. Topological crystalline insulators in the SnTe material class. Nat. Commun. 3, 982 (2012).

    Google Scholar 

  29. 29.

    Barone, P. et al. Pressure-induced topological phase transitions in rocksalt chalcogenides. Phys. Rev. B 88, 045207 (2013).

    Google Scholar 

  30. 30.

    Abrikosov, A. A. Fundamentals of the Theory of Metals (North-Holland, 1988).

  31. 31.

    Blanter, Ya. M., Kaganov, M. I., Pantsulaya, A. V. & Varlamov, A. A. The theory of electronic topological transitions. Phys. Rep. 245, 159–257 (1994).

    CAS  Google Scholar 

  32. 32.

    Svane, A. et al. Quasiparticle self-consistent GW calculations for PbS, PbSe, and PbTe: band structure and pressure coefficients. Phys. Rev. B 81, 245120 (2010).

    Google Scholar 

  33. 33.

    Qu, D. X., Hor, Y. S., Xiong, J., Cava, R. J. & Ong, N. P. Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2Te3. Science 329, 821–824 (2010).

    CAS  Google Scholar 

  34. 34.

    Lu, H. Z. & Shen, S. Q. Weak localization of bulk channels in topological insulator thin films. Phys. Rev. B 84, 125134 (2011).

    Google Scholar 

  35. 35.

    Wu, M. K. et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58, 908–910 (1987).

    CAS  Google Scholar 

  36. 36.

    Dziawa, P. et al. Topological crystalline insulator states in Pb1−xSnxSe. Nat. Mater. 11, 1023–1027 (2012).

    CAS  Google Scholar 

  37. 37.

    Xu, S. Y. et al. Observation of a topological crystalline insulator phase and topological phase transition in Pb1−xSnxTe. Nat. Commun. 3, 1192 (2012).

    Google Scholar 

  38. 38.

    Dimmock, J. O., Melngailis, I. & Strauss, A. J. Band structure and laser action in PbxSn1−xTe. Phys. Rev. Lett. 16, 1193–1196 (1966).

    CAS  Google Scholar 

  39. 39.

    Gavriliuk, A. G., Mironovich, A. A. & Struzhkin, V. V. Miniature diamond anvil cell for broad range of high pressure measurements. Rev. Sci. Instrum. 80, 043906 (2009).

    CAS  Google Scholar 

  40. 40.

    Van der Pauw, L. J. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philps Res. Repts. 13, 1–9 (1958).

    Google Scholar 

  41. 41.

    Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N. & Hausermann, D. Two-dimensional detector software: from real detector to idealised image or two-theta scan. High. Press. Res. 14, 235–248 (1996).

    Google Scholar 

  42. 42.

    Toby, B. H. E. X. P. G. U. I. a graphical user interface for GSAS. J. Appl. Cryst. 34, 210–213 (2001).

    CAS  Google Scholar 

  43. 43.

    Mao, H. K., Bell, P. M., Shaner, J. W. & Stembey, D. J. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar. J. Appl. Phys. 49, 3276–3283 (1978).

    CAS  Google Scholar 

  44. 44.

    Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 136, 864–871 (1964).

    Google Scholar 

  45. 45.

    Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133–1138 (1965).

    Google Scholar 

  46. 46.

    Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986).

    CAS  Google Scholar 

  47. 47.

    Kresse, G. & Hafne, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558(R)–561(R) (1993).

    Google Scholar 

  48. 48.

    Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    CAS  Google Scholar 

  49. 49.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  50. 50.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Google Scholar 

  51. 51.

    Mostofi, A. A. et al. An updated version of Wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).

    CAS  Google Scholar 

  52. 52.

    Souza, I., Marzari, N. & Vanderbilt, D. Maximally localized Wannier functions for entangled energy bands. Phys. Rev. B 65, 035109 (2001).

    Google Scholar 

  53. 53.

    Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847–12865 (1997).

    CAS  Google Scholar 

  54. 54.

    Wu, Q. S., Zhang, S. N., Song, H. F., Troyer, M. & Soluyanov, A. A. WannierTools: an open-source software package for novel topological materials. Comput. Phys. Commun. 224, 405–416 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

The work at HPSTAR was supported by the National Key R&D Programme of China (grant no. 2018YFA0305900). The work performed at the University of Houston was funded by the Department of Energy’s Basic Energy Science programme under grant no. DE-SC0010831. The work at Carnegie was funded by the US National Science Foundation under grant no. EAR-1763287. P.Q.C. acknowledges the internship programme at Carnegie Institution of Washington.

Author information

Affiliations

Authors

Contributions

X.J.C. conceived the project. X.J.C. and Z.R. designed the project. Q.Z. and Z.R. synthesized the samples. L.C.C. and V.V.S. performed high-pressure X-ray diffraction measurements. P.Q.C. and A.F.G. performed high-pressure Raman spectroscopy measurements. L.C.C. and X.J.C. performed the TE properties measurements. W.J.L. and X.J.C. carried out the density functional theory calculations. All of the authors analysed the data and discussed the underlying physics. X.J.C. wrote the paper with contributions from the other authors. The manuscript reflects the contributions of all authors.

Corresponding author

Correspondence to Xiao-Jia Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Figs. 1–11, Notes 1–6 and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, LC., Chen, PQ., Li, WJ. et al. Enhancement of thermoelectric performance across the topological phase transition in dense lead selenide. Nat. Mater. 18, 1321–1326 (2019). https://doi.org/10.1038/s41563-019-0499-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing