Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Imaging material functionality through three-dimensional nanoscale tracking of energy flow


The ability of energy carriers to move between atoms and molecules underlies biochemical and material function. Understanding and controlling energy flow, however, requires observing it on ultrasmall and ultrafast spatio-temporal scales, where energetic and structural roadblocks dictate the fate of energy carriers. Here, we developed a non-invasive optical scheme that leverages non-resonant interferometric scattering to track tiny changes in material polarizability created by energy carriers. We thus map evolving energy carrier distributions in four dimensions of spacetime with few-nanometre lateral precision and directly correlate them with material morphology. We visualize exciton, charge and heat transport in polyacene, silicon and perovskite semiconductors and elucidate how disorder affects energy flow in three dimensions. For example, we show that morphological boundaries in polycrystalline metal halide perovskites possess lateral- and depth-dependent resistivities, blocking lateral transport for surface but not bulk carriers. We also reveal strategies for interpreting energy transport in disordered environments that will direct the design of defect-tolerant materials for the semiconductor industry of tomorrow.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Visualizing semiconductor exciton, charge and heat transport across four orders of magnitude in space and time.
Fig. 2: Morphology-dependent exciton transport in TIPS-Pn.
Fig. 3: Heterogeneous charge carrier transport in polycrystalline MAPbI3.
Fig. 4: Quantifying spatial and temporal carrier transport heterogeneity in polycrystalline MAPbI3.

Data availability

All raw data are displayed in Figs. 13 of the main text and Supplementary Figs. 224. Raw image files are available on reasonable request from the corresponding author.


  1. 1.

    García de Arquer, F. P., Armin, A., Meredith, P. & Sargent, E. H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100 (2017).

    Google Scholar 

  2. 2.

    Sirringhaus, H., Tessler, N. & Friend, R. Integrated optoelectronic devices based on conjugated polymers. Science 280, 1741–1744 (1998).

    CAS  Google Scholar 

  3. 3.

    Scholes, G. D. & Rumbles, G. Excitons in nanoscale systems. Nat. Mater. 5, 683–696 (2006).

    CAS  Google Scholar 

  4. 4.

    Brenner, T. M. et al. Are mobilities in hybrid organic-inorganic halide perovskites actually ‘high’? J. Phys. Chem. Lett. 6, 4754–4757 (2015).

    CAS  Google Scholar 

  5. 5.

    Akselrod, G. M. et al. Visualization of exciton transport in ordered and disordered molecular solids. Nat. Commun. 5, 3646 (2014).

    CAS  Google Scholar 

  6. 6.

    Penwell, S. B., Ginsberg, L. D. S., Noriega, R. & Ginsberg, N. S. Resolving ultrafast exciton migration in organic solids at the nanoscale. Nat. Mater. 16, 1136–1142 (2017).

    CAS  Google Scholar 

  7. 7.

    Kulig, M. et al. Exciton diffusion and halo effects in monolayer semiconductors. Phys. Rev. Lett. 120, 207401 (2018).

    CAS  Google Scholar 

  8. 8.

    Seo, M. A. et al. Mapping carrier diffusion in single silicon core-shell nanowires with ultrafast optical microscopy. Nano Lett. 12, 6334–6338 (2012).

    CAS  Google Scholar 

  9. 9.

    Gabriel, M. M. et al. Direct imaging of free carrier and trap carrier motion in silicon nanowires by spatially-separated femtosecond pump–probe microscopy. Nano Lett. 13, 1336–1340 (2013).

    CAS  Google Scholar 

  10. 10.

    Guo, Z., Manser, J. S., Wan, Y., Kamat, P. V. & Huang, L. Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy. Nat. Commun. 6, 7471–7479 (2015).

    CAS  Google Scholar 

  11. 11.

    Rozenman, G. G., Akulov, K., Golombek, A. & Schwartz, T. Long-range transport of organic exciton-polaritons revealed by ultrafast microscopy. ACS Photon. 5, 105–110 (2018).

    CAS  Google Scholar 

  12. 12.

    Najafi, E., Scarborough, T. D., Tang, J. & Zewail, A. Four-dimensional imaging of carrier interface dynamics in p-n junctions. Science 347, 164–167 (2015).

    CAS  Google Scholar 

  13. 13.

    Plakhotnik, T. & Palm, V. Interferometric signatures of single molecules. Phys. Rev. Lett. 87, 183602-1–183602-4 (2001).

    Google Scholar 

  14. 14.

    Wolpert, C. et al. Transient reflection: a versatile technique for ultrafast spectroscopy of a single quantum dot in complex environments. Nano Lett. 12, 453–457 (2012).

    CAS  Google Scholar 

  15. 15.

    Karrai, K. & Warburton, R. J. Optical transmission and reflection spectroscopy of single quantum dots. Superlattice. Microst 33, 311–337 (2003).

    CAS  Google Scholar 

  16. 16.

    Amos, L. A. & Amos, W. B. The bending of sliding microtubules imaged by confocal light microscopy and negative stain electron microscopy. J. Cell Sci. 1991, 95–101 (1991).

    Google Scholar 

  17. 17.

    Lindfors, K., Kalkbrenner, T., Stoller, P. & Sandoghdar, V. Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys. Rev. Lett. 93, 037401 (2004).

    CAS  Google Scholar 

  18. 18.

    Jacobsen, V., Stoller, P., Brunner, C., Vogel, V. & Sandoghdar, V. Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface. Opt. Express 14, 405–414 (2006).

    CAS  Google Scholar 

  19. 19.

    Young, G. et al. Quantitative mass imaging of single biological macromolecules. Science 360, 423–427 (2018).

    CAS  Google Scholar 

  20. 20.

    Ortega-Arroyo, J. & Kukura, P. Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy. Phys. Chem. Chem. Phys. 14, 15625–15636 (2012).

    CAS  Google Scholar 

  21. 21.

    Ignatovich, F. V. & Novotny, L. Real-time and background-free detection of nanoscale particles. Phys. Rev. Lett. 96, 1–4 (2006).

    Google Scholar 

  22. 22.

    Berciaud, S., Cognet, L., Blab, G. A. & Lounis, B. Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals. Phys. Rev. Lett. 93, 257402 (2004).

    Google Scholar 

  23. 23.

    Boyer, D., Tamarat, P., Maali, A., Lounis, B. & Orrit, M. Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297, 1160–1163 (2002).

    CAS  Google Scholar 

  24. 24.

    Price, M. B. et al. Hot-carrier cooling and photoinduced refractive index changes in organic–inorganic lead halide perovskites. Nat. Commun. 6, 8420 (2015).

    CAS  Google Scholar 

  25. 25.

    Yang, Y. et al. Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films. Nat. Energy 2, 1–7 (2017).

    Google Scholar 

  26. 26.

    Sorenson, S. A., Patrow, J. G. & Dawlaty, J. M. Electronic dynamics in natural iron pyrite studied by broadband transient reflection spectroscopy. J. Phys. Chem. C. 120, 7736–7747 (2016).

    CAS  Google Scholar 

  27. 27.

    Jacoboni, C., Canali, C., Otiaviani, G. & Quaranta, A. A. A review of some charge transport properties of silicon. Solid State Phys. 20, 77–89 (1977).

    Google Scholar 

  28. 28.

    Shanks, H. R., Maycock, P. D., Sidles, P. H. & Danielson, G. C. Thermal conductivity of silicon from 300 to 1400 K. Phys. Rev. 130, 1743–1748 (1963).

    CAS  Google Scholar 

  29. 29.

    Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    CAS  Google Scholar 

  30. 30.

    Hill, A. H., Smyser, K. E., Kennedy, C. L., Massaro, E. S. & Grumstrup, E. M. Screened charge carrier transport in methylammonium lead iodide perovskite thin films. J. Phys. Chem. Lett. 8, 948–953 (2017).

    CAS  Google Scholar 

  31. 31.

    Anthony, J. E., Brooks, J. S., Eaton, D. L. & Parkin, S. R. Functionalized pentacene: improved electronic properties from control of solid-state order. J. Am. Chem. Soc. 123, 9482–9483 (2001).

    CAS  Google Scholar 

  32. 32.

    Giri, G. et al. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 480, 504–508 (2011).

    CAS  Google Scholar 

  33. 33.

    Chen, J., Tee, C. K., Shtein, M., Anthony, J. & Martin, D. C. Grain-boundary-limited charge transport in solution-processed 6,13 bis(tri-isopropylsilylethynyl) pentacene thin film transistors. J. Appl. Phys. 103, 114513 (2008).

    Google Scholar 

  34. 34.

    Zhu, T., Wan, Y., Guo, Z., Johnson, J. & Huang, L. Two birds with one stone: tailoring singlet fission for both triplet yield and exciton diffusion length. Adv. Mater. 7539–7547 (2016).

    CAS  Google Scholar 

  35. 35.

    Rivnay, J. et al. Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films. Nat. Mater. 8, 952–958 (2009).

    CAS  Google Scholar 

  36. 36.

    Greuter, F. & Blatter, G. Electrical properties of grain boundaries in polycrystalline compound semiconductors. Semicond. Sci. Technol. 5, 111–137 (1990).

    CAS  Google Scholar 

  37. 37.

    Yun, J. S. et al. Benefit of grain boundaries in organic-inorganic halide planar perovskite solar cells. J. Phys. Chem. Lett. 6, 875–880 (2015).

    CAS  Google Scholar 

  38. 38.

    Reid, O. G., Yang, M., Kopidakis, N., Zhu, K. & Rumbles, G. Grain-size-limited mobility in methylammonium lead iodide perovskite thin films. ACS Energy Lett. 1, 561–565 (2016).

    CAS  Google Scholar 

  39. 39.

    DeQuilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).

    CAS  Google Scholar 

  40. 40.

    DeQuilettes, D. W. et al. Tracking photoexcited carriers in hybrid perovskite semiconductors: trap-dominated spatial heterogeneity and diffusion. ACS Nano 11, 11488–11496 (2017).

    CAS  Google Scholar 

  41. 41.

    Tian, W. et al. Limiting perovskite solar cell performance by heterogeneous carrier extraction. Angew. Chem. Int. Ed. 55, 13067–13071 (2016).

    CAS  Google Scholar 

  42. 42.

    Ciesielski, R. et al. Grain boundaries act as solid walls for charge carrier diffusion in large crystal MAPI thin films. ACS Appl. Mater. Interf. 10, 7974–7981 (2018).

    CAS  Google Scholar 

  43. 43.

    MacDonald, G. A. et al. Methylammonium lead iodide grain boundaries exhibit depth-dependent electrical properties. Energy Environ. Sci. 9, 3642–3649 (2016).

    CAS  Google Scholar 

  44. 44.

    Schnedermann, C. et al. Sub-10 fs time-resolved vibronic optical microscopy. J. Phys. Chem. Lett. 7, 4854–4859 (2016).

    CAS  Google Scholar 

  45. 45.

    Snaider, J. M. et al. Ultrafast imaging of carrier transport across grain boundaries in hybrid perovskite thin films. ACS Energy Lett. 3, 1402–1408 (2018).

    CAS  Google Scholar 

  46. 46.

    Saliba, M., Correa-Baena, J. P., Grätzel, M., Hagfeldt, A. & Abate, A. Perovskite solar cells: from the atomic level to film quality and device performance. Angew. Chem. Int. Ed. 57, 2554–2569 (2018).

    CAS  Google Scholar 

  47. 47.

    Berry, J. et al. Hybrid organic-inorganic perovskites (HOIPs): opportunities and challenges. Adv. Mater. 27, 5102–5112 (2015).

    CAS  Google Scholar 

  48. 48.

    Krishnan, M., Mojarad, N., Kukura, P. & Sandoghdar, V. Geometry-induced electrostatic trapping of nanometric objects in a fluid. Nature 467, 692–695 (2010).

    CAS  Google Scholar 

  49. 49.

    Baffou, G. et al. Thermal imaging of nanostructures by quantitative optical phase analysis. ACS Nano 6, 2452–2458 (2012).

    CAS  Google Scholar 

  50. 50.

    Celebrano, M., Kukura, P., Renn, A. & Sandoghdar, V. Single-molecule imaging by optical absorption. Nat. Photon. 5, 95–98 (2011).

    CAS  Google Scholar 

  51. 51.

    Ortega Arroyo, J., Cole, D. & Kukura, P. Interferometric scattering microscopy and its combination with single-molecule fluorescence imaging. Nat. Protoc. 11, 617–633 (2016).

    CAS  Google Scholar 

Download references


This work was supported by STROBE, A National Science Foundation Science and Technology Center under grant no. DMR 1548924. The manuscript revision was also supported by the Photonics at Thermodynamic Limits Energy Frontier Research Center, funded by the US Department of Energy Office of Science Basic Energy Sciences Program, under award no. DE-SC0019140. Q.Y. and H.L.W. acknowledge National Science Foundation Graduate Research Fellowship DGE 1106400. N.S.G. acknowledges an Alfred P. Sloan Research Fellowship, a David and Lucile Packard Foundation Fellowship for Science and Engineering, and a Camille and Henry Dreyfus Teacher-Scholar Award.

Author information




M.D. designed and built the set-up with Q.Y. M.D. and H.L.W. prepared samples and collected the data. M.D. analysed the data. N.S.G. supervised the research. M.D. and N.S.G. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Naomi S. Ginsberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Detailed description of the stroboSCAT set-up, stroboSCAT contrast mechanism, data analysis, sample preparation, current system resolution, distinguishing scattering from normal reflection, supporting experimental data, in situ spectral interferometry on MAPbI3(Cl) films, simulations of depth-dependent carrier diffusion in polycrystalline films using the finite element method, Figs. 1–24 and refs. 1–54.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Delor, M., Weaver, H.L., Yu, Q. et al. Imaging material functionality through three-dimensional nanoscale tracking of energy flow. Nat. Mater. 19, 56–62 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing