Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Valley-dependent exciton fine structure and Autler–Townes doublets from Berry phases in monolayer MoSe2

Abstract

The Berry phase of Bloch states can have profound effects on electron dynamics1,2,3 and lead to novel transport phenomena, such as the anomalous Hall effect and the valley Hall effect4,5,6. Recently, it was predicted that the Berry phase effect can also modify the exciton states in transition metal dichalcogenide monolayers, and lift the energy degeneracy of exciton states with opposite angular momentum through an effective valley-orbital coupling1,7,8,9,10,11. Here, we report the observation and control of the Berry phase-induced splitting of the 2p exciton states in monolayer molybdenum diselenide (MoSe2) using the intraexciton optical Stark spectroscopy. We observe the time-reversal-symmetric analogue of the orbital Zeeman effect resulting from the valley-dependent Berry phase, which leads to energy difference of +14 (−14) meV between the 2p+ and 2p exciton states in the K (K′) valley, consistent with the ordering from our ab initio GW-Bethe–Salpeter equation results. In addition, we show that the light–matter coupling between intraexciton states is remarkably strong, leading to a prominent valley-dependent Autler–Townes doublet under resonant driving. Our study opens up pathways to coherently manipulate the quantum states and excitonic excitation with infrared radiation in two-dimensional semiconductors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematics of exciton spectrum and optical transition in monolayer MoSe2.
Fig. 2: Transient reflection spectra of K-valley exciton transitions.
Fig. 3: Valley-dependent intraexciton optical Stark effect.
Fig. 4: Valley-dependent Autler–Townes splitting.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    Price, H. M., Ozawa, T. & Carusotto, I. Quantum mechanics with a momentum-space artificial magnetic field. Phys. Rev. Lett. 113, 190403 (2014).

    Article  Google Scholar 

  3. 3.

    Chang, M.-C. & Niu, Q. Berry phase, hyperorbits, and the Hofstadter spectrum. Phys. Rev. Lett. 75, 1348–1351 (1995).

    CAS  Article  Google Scholar 

  4. 4.

    Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    Novoselov, K. S. et al. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nat. Phys. 2, 177–180 (2006).

    Article  Google Scholar 

  6. 6.

    Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Zhou, J., Shan, W.-Y., Yao, W. & Xiao, D. Berry phase modification to the energy spectrum of excitons. Phys. Rev. Lett. 115, 166803 (2015).

    Article  Google Scholar 

  8. 8.

    Srivastava, A. & Imamoğlu, A. Signatures of Bloch-band geometry on excitons: nonhydrogenic spectra in transition-metal dichalcogenides. Phys. Rev. Lett. 115, 166802 (2015).

    Article  Google Scholar 

  9. 9.

    Trushin, M., Goerbig, M. O. & Belzig, W. Model prediction of self-rotating excitons in two-dimensional transition-metal dichalcogenides. Phys. Rev. Lett. 120, 187401 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Bright and dark singlet excitons via linear and two-photon spectroscopy in monolayer transition-metal dichalcogenides. Phys. Rev. B 92, 085413 (2015).

    Article  Google Scholar 

  11. 11.

    Wu, F., Qu, F. & MacDonald, A. H. Exciton band structure of monolayer MoS2. Phys. Rev. B 91, 075310 (2015).

    Article  Google Scholar 

  12. 12.

    Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  Google Scholar 

  14. 14.

    Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887–891 (2012).

    Article  Google Scholar 

  15. 15.

    Ye, Z., Sun, D. & Heinz, T. F. Optical manipulation of valley pseudospin. Nat. Phys. 13, 26–29 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol 7, 494–498 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Article  Google Scholar 

  19. 19.

    Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    Article  Google Scholar 

  21. 21.

    Ye, Z. et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214–218 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Poellmann, C. et al. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. Nat. Mater. 14, 889–893 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Merkl, P. et al. Ultrafast transition between exciton phases in van der Waals heterostructures. Nat. Mater. 18, 691–696 (2019).

    CAS  Article  Google Scholar 

  24. 24.

    Yong, C.-K. et al. Biexcitonic optical Stark effects in monolayer molybdenum diselenide. Nat. Phys. 14, 1092–1096 (2018).

    CAS  Article  Google Scholar 

  25. 25.

    Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 14, 290–294 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    Wang, G. et al. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances. Phys. Rev. Lett. 114, 097403 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014).

    Article  Google Scholar 

  29. 29.

    Deslippe, J. et al. BerkeleyGW: a massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Commun. 183, 1269–1289 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    Rohlfing, M. & Louie, S. Electron–hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927–4944 (2000).

    CAS  Article  Google Scholar 

  31. 31.

    Hybertsen, M. & Louie, S. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986).

    CAS  Article  Google Scholar 

  32. 32.

    Autler, S. H. & Townes, C. H. Stark effect in rapidly varying fields. Phys. Rev. 100, 703–722 (1955).

    Article  Google Scholar 

  33. 33.

    Bakos, J. S. AC Stark effect and multiphoton processes in atoms. Phys. Rep. 31, 209–235 (1977).

    Article  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by the Center for Computational Study of Excited State Phenomena in Energy Materials, which is funded by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02–05CH11231, as part of the Computational Materials Sciences Program, which provided the experimental measurements and GW-BSE calculations. The sample fabrication and linear optical spectroscopy was supported by the US Army Research Office under MURI award W911NF-17-1-0312. The pump–probe setup was supported by the ARO MURI award W911NF-15-1-0447. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231, and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562. S.T. acknowledges support from NSF DMR-1552220. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan and the CREST (JPMJCR15F3), JST. E.C.R acknowledges support from the Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program. C.-K.Y. and C.S.O. acknowledge useful discussion with A. Srivastava.

Author information

Affiliations

Authors

Contributions

C.-K.Y. and F.W. conceived the project. C.-K.Y. supervised the project, designed the experiments and carried out optical measurements, assisted by J.H. and H.D. C.-K.Y. and F.W. analysed the data and performed theoretical analysis, assisted by M.I.B.U. C.-K.Y., M.I.B.U., E.C.R. and A.Z. fabricated the devices. C.S.O., T.C. and S.G.L. performed GW-BSE calculations, Y.S, H.C. and S.T. synthesized MoSe2 crystals. K.W. and T.T. synthesized hBN crystals. C.-K.Y. and F.W. wrote the manuscript with inputs from all authors.

Corresponding authors

Correspondence to Chaw-Keong Yong or Feng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–5, Figs. 1–5 and refs. 1–18.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yong, CK., Utama, M.I.B., Ong, C.S. et al. Valley-dependent exciton fine structure and Autler–Townes doublets from Berry phases in monolayer MoSe2. Nat. Mater. 18, 1065–1070 (2019). https://doi.org/10.1038/s41563-019-0447-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing