Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Surface charge printing for programmed droplet transport

Abstract

The directed, long-range and self-propelled transport of droplets on solid surfaces is crucial for many applications from water harvesting to bio-analysis1,2,3,4,5,6,7,8,9. Typically, preferential transport is achieved by topographic or chemical modulation of surface wetting gradients that break the asymmetric contact line and overcome the resistance force to move droplets along a particular direction10,11,12,13,14,15,16. Nonetheless, despite extensive progress, directional droplet transport is limited to low transport velocity or short transport distance. Here we report the high-velocity and ultralong transport of droplets elicited by surface charge density gradients printed on diverse substrates. We leverage the facile water droplet printing on superamphiphobic surfaces to create rewritable surface charge density gradients that stimulate droplet propulsion under ambient conditions17 and without the need for additional energy input. Our strategy provides a platform for programming the transport of droplets on flat, flexible and vertical surfaces that may be valuable for applications requiring a controlled movement of droplets17,18,19.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Droplet transport mediated by a printable SCD gradient.
Fig. 2: Charge characterization and charge density gradient formation.
Fig. 3: Self-propulsion mechanism and performance control.
Fig. 4: General applications of the charged superamphiphobic surface.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Stone, H. A., Stroock, A. D. & Ajdari, A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004).

    Article  Google Scholar 

  2. Prakash, M., Quéré, D. & Bush, J. W. Surface tension transport of prey by feeding shorebirds: the capillary ratchet. Science 320, 931–934 (2008).

    Article  CAS  Google Scholar 

  3. Tuteja, A., Choi, W., Mabry, J. M., McKinley, G. H. & Cohen, R. E. Robust omniphobic surfaces. Proc. Natl Acad. Sci. USA 105, 18200–18205 (2008).

    Article  CAS  Google Scholar 

  4. Abdelgawad, M. & Wheeler, A. R. The digital revolution: a new paradigm for microfluidics. Adv. Mater. 21, 920–925 (2009).

    Article  CAS  Google Scholar 

  5. Nosonovsky, M. & Bhushan, B. Superhydrophobic surfaces and emerging applications: non-adhesion, energy, green engineering. Curr. Opin. Colloid Interface Sci. 14, 270–280 (2009).

    Article  CAS  Google Scholar 

  6. Seemann, R., Brinkmann, M., Pfohl, T. & Herminghaus, S. Droplet based microfluidics. Rep. Prog. Phys. 75, 016601 (2011).

    Article  Google Scholar 

  7. Wong, T. S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011).

    Article  CAS  Google Scholar 

  8. Liu, T. L., Chen, Z. & Kim, C. J. A dynamic Cassie–Baxter model. Soft Matter 11, 1589–1596 (2015).

    Article  CAS  Google Scholar 

  9. Schutzius, T. M. et al. Spontaneous droplet trampolining on rigid superhydrophobic surfaces. Nature 527, 82–85 (2015).

    Article  CAS  Google Scholar 

  10. Ichimura, K., Oh, S. K. & Nakagawa, M. Light-driven motion of liquids on a photoresponsive surface. Science 288, 1624–1626 (2000).

    Article  CAS  Google Scholar 

  11. Daniel, S., Chaudhury, M. K. & Chen, J. C. Fast drop movements resulting from the phase change on a gradient surface. Science 291, 633–636 (2001).

    Article  CAS  Google Scholar 

  12. Bjelobrk, N. et al. Thermocapillary motion on lubricant-impregnated surfaces. Phys. Rev. Fluids 1, 063902 (2016).

    Article  Google Scholar 

  13. Chen, H. et al. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature 532, 85–88 (2016).

    Article  CAS  Google Scholar 

  14. Lv, J.-a. et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature 537, 179–184 (2016).

    Article  CAS  Google Scholar 

  15. Vialetto, J. et al. Magnetic actuation of drops and liquid marbles using a deformable paramagnetic liquid substrate. Angew. Chem. Int. Ed. 56, 16565–16570 (2017).

    Article  CAS  Google Scholar 

  16. McHale, G., Brown, C. V., Newton, M. I., Wells, G. G. & Sampara, N. Dielectrowetting driven spreading of droplets. Phys. Rev. Lett. 107, 186101 (2011).

    Article  CAS  Google Scholar 

  17. Lagubeau, G. et al. Leidenfrost on a ratchet. Nat. Phys. 7, 395–398 (2011).

    Article  CAS  Google Scholar 

  18. Vakarelski, I. U., Marston, J. O., Chan, D. Y. C. & Thoroddsen, S. T. Drag reduction by Leidenfrost vapor layers. Phys. Rev. Lett. 106, 214501 (2011).

    Article  Google Scholar 

  19. Marin, A. G. et al. The microfluidic Kelvin water dropper. Lab Chip 13, 4503–4506 (2013).

    Article  CAS  Google Scholar 

  20. Xu, L., Barcos, L. & Nagel, S. R. Splashing of liquids: interplay of surface roughness with surrounding gas. Phys. Rev. E 76, 066311 (2007).

    Article  Google Scholar 

  21. Lin, Z. H., Cheng, G., Lin, L., Lee, S. & Wang, Z. L. Water–solid surface contact electrification and its use for harvesting liquid-wave energy. Angew. Chem. Int. Ed. 52, 12545–12549 (2013).

    Article  CAS  Google Scholar 

  22. McCarty, L. S. & Whitesides, G. M. Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew. Chem. Int. Ed. 47, 2188–2207 (2008).

    Article  CAS  Google Scholar 

  23. Liu, C. Y. & Bard, A. J. Electrons on dielectrics and contact electrification. Chem. Phys. Lett. 480, 145–156 (2009).

    Article  CAS  Google Scholar 

  24. Baytekin, H. T., Baytekin, B., Incorvati, J. T. & Grzybowski, B. A. Material transfer and polarity reversal in contact charging. Angew. Chem. Int. Ed. 124, 4927–4931 (2012).

    Article  Google Scholar 

  25. Scatena, L. F., Brown, M. G. & Richmond, G. L. Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292, 908–912 (2001).

    Article  CAS  Google Scholar 

  26. Miljkovic, N., Preston, D. J., Enright, R. & Wang, E. N. Electrostatic charging of jumping droplets. Nat. Commun. 4, 2517 (2013).

    Article  Google Scholar 

  27. Langmuir, I. Surface electrification due to the recession of aqueous solutions from hydrophobic surfaces. J. Am. Chem. Soc. 60, 1190–1194 (1938).

    Article  CAS  Google Scholar 

  28. Banpurkar, A. G. et al. Spontaneous electrification of fluoropolymer–water interfaces probed by electrowetting. Faraday Discuss. 199, 29–47 (2017).

    Article  CAS  Google Scholar 

  29. Li, J. et al. Topological liquid diode. Sci. Adv. 3, aao3530 (2017).

    Article  Google Scholar 

  30. Blake, T. D., Clarke, A. & Stattersfield, E. H. An investigation of electrostatic assist in dynamic wetting. Langmuir 16, 2928–2935 (2000).

    Article  CAS  Google Scholar 

  31. Deng, X., Mammen, L., Butt, H. J. & Vollmer, D. Candle soot as a template for a transparent robust superamphiphobic coating. Science 335, 67–70 (2012).

    Article  CAS  Google Scholar 

  32. Song, D., Song, B., Hu, H., Du, X. & Ma, Z. Contact angle and impinging process of droplets on partially grooved hydrophobic surfaces. Appl. Therm. Eng. 85, 356–364 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21603026), Research Grants Council of Hong Kong (no. C1018-17G) and supported by Max-Planck-Gesellschaft (Max Planck Partner Group UESTC-MPIP) and the ERC advanced grant 340391-SUPRO. We thank S. J. Lin for assistance with adhesion force measurements; L. Zhou and T. H. Zhang for assistance with the analytical model; and S. Sun and H. L. Liu for discussions.

Author information

Authors and Affiliations

Authors

Contributions

Q.S., X.D. and Z.W. conceived the research and designed the experiments. X.D., Z.W. and H.-J.B. supervised the research. Q.S., D.W. and J.Z. carried out the experiment. Q.S. and Y.L. built the analytical models. All authors analysed the data. Q.S., S.Y., L.C., J.C. and D.V. interpreted the data. Q.S., X.D., Z.W., D.V. and H.-J.B. wrote the paper.

Corresponding authors

Correspondence to Zuankai Wang, Hans-Jürgen Butt or Xu Deng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Video legends 1–10, discussion, Figs. 1–14, Tables 1–4 and refs. 1–35.

Supplementary Video 1

Droplet transport mediated by surface charge gradient.

Supplementary Video 2

Droplet transport on a superamphiphobic surface with the SCD gradient placed upside down.

Supplementary Video 3

SCD gradient generation process.

Supplementary Video 4

Circular arc motion of a droplet.

Supplementary Video 5

Droplet transport on flexible superamphiphobic surfaces with SCD gradients.

Supplementary Video 6

Ultralong-distance droplet transport.

Supplementary Video 7

A droplet cargo device.

Supplementary Video 8

Charged surface-based droplet pipette.

Supplementary Video 9

Blood transportation with a SCD gradient.

Supplementary Video 10

Open channel droplet manipulation platform for particle transport.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Wang, D., Li, Y. et al. Surface charge printing for programmed droplet transport. Nat. Mater. 18, 936–941 (2019). https://doi.org/10.1038/s41563-019-0440-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0440-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing