Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells

Subjects

Abstract

A critical current density on stripping is identified that results in dendrite formation on plating and cell failure. When the stripping current density removes Li from the interface faster than it can be replenished, voids form in the Li at the interface and accumulate on cycling, increasing the local current density at the interface and ultimately leading to dendrite formation on plating, short circuit and cell death. This occurs even when the overall current density is considerably below the threshold for dendrite formation on plating. For the Li/Li6PS5Cl/Li cell, this is 0.2 and 1.0 mA cm−2 at 3 and 7 MPa pressure, respectively, compared with a critical current for plating of 2.0 mA cm−2 at both 3 and 7 MPa. The pressure dependence on stripping indicates that creep rather than Li diffusion is the dominant mechanism transporting Li to the interface. The critical stripping current is a major factor limiting the power density of Li anode solid-state cells. Considerable pressure may be required to achieve even modest power densities in solid-state cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Cell schematic and voltage versus charge passed for three-electrode cells on Li metal plating and stripping at the Li/Li6PS5Cl interface.
Fig. 2: SEM cross-sections of the Li metal/Li6PS5Cl interface.
Fig. 3: In situ X-ray computed tomography images of the Li metal/Li6PS5Cl interface of a cycled Li metal/Li6PS5Cl/Li metal cell.
Fig. 4: Schematic of Li metal/Li6PS5Cl interface cycled at an overall current density above the CCS.
Fig. 5: Voltage versus charge passed for three-electrode Li/Li6PS5Cl cells at different pressures and current densities.
Fig. 6: Voltage versus charge passed for two-electrode Li/Li6PS5Cl/Li cells cycled at different pressures and current densities.

Data availability

Supporting research data has been deposited in the Oxford Research Archive and is available at https://doi.org/10.5287/bodleian:gA47ppAz9.

References

  1. 1.

    Hooper, A. & Tofield, B. C. All-solid-state batteries. J. Power Sources 11, 33–41 (1984).

    CAS  Article  Google Scholar 

  2. 2.

    Kerman, K., Luntz, A., Viswanathan, V., Chiang, Y.-M. & Chen, Z. Review—practical challenges hindering the development of solid state Li ion batteries. J. Electrochem. Soc. 164, A1731–A1744 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

    Article  Google Scholar 

  4. 4.

    Zhou, W. et al. Polymer lithium-garnet interphase for an all-solid-state rechargeable battery. Nano Energy 53, 926–931 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    Pang, Q., Liang, X., Shyamsunder, A. & Nazar, L. F. An in vivo formed solid electrolyte surface layer enables stable plating of Li metal. Joule 1, 871–886 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Cheng, E. J., Sharafi, A. & Sakamoto, J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta 223, 85–91 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Nagao, M. et al. In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte. Phys. Chem. Chem. Phys. 15, 18600–18606 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396 (2005).

    CAS  Article  Google Scholar 

  9. 9.

    Monroe, C. & Newman, J. Dendrite growth in lithium/polymer systems. J. Electrochem. Soc. 150, A1377 (2003).

    CAS  Article  Google Scholar 

  10. 10.

    Lotsch, B. V. & Maier, J. Relevance of solid electrolytes for lithium-based batteries: a realistic view. J. Electroceram. 38, 128–141 (2017).

    Article  Google Scholar 

  11. 11.

    Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1–12 (2017).

    Article  Google Scholar 

  12. 12.

    Swamy, T. et al. Lithium metal penetration induced by electrodeposition through solid electrolytes: example in single-crystal Li6La3ZrTaO12 garnet. J. Electrochem. Soc. 165, A3648–A3655 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Sharafi, A., Haslam, C. G., Kerns, R. D., Wolfenstine, J. & Sakamoto, J. Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte. J. Mater. Chem. A 5, 21491–21504 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Sharafi, A. et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem. Mater. 29, 7961–7968 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Han, X. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Botros, M., Djenadic, R., Clemens, O., Möller, M. & Hahn, H. Field assisted sintering of fine-grained Li7-3xLa3Zr2AlxO12 solid electrolyte and the influence of the microstructure on the electrochemical performance. J. Power Sources 309, 108–115 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Yonemoto, F. et al. Temperature effects on cycling stability of Li plating/stripping on Ta-doped Li7La3Zr2O12. J. Power Sources 343, 207–215 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Manalastas, W. et al. Mechanical failure of garnet electrolytes during Li electrodeposition observed by in-operando microscopy. J. Power Sources 412, 287–293 (2019).

    CAS  Article  Google Scholar 

  19. 19.

    Basappa, R. H., Ito, T. & Yamada, H. Contact between garnet-type solid electrolyte and lithium metal anode: influence on charge transfer resistance and short circuit prevention. J. Electrochem. Soc. 164, A666–A671 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Koerver, R. et al. Chemo-mechanical expansion of lithium electrode materials—on the route to mechanically optimized all-solid-state batteries. Energy Environ. Sci. 11, 2142–2158 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Koerver, R. et al. Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem. Mater. 29, 5574–5582 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Koshikawa, H. et al. Dynamic changes in charge-transfer resistance at Li metal/Li7La3Zr2O12 interfaces during electrochemical Li dissolution/deposition cycles. J. Power Sources 376, 147–151 (2018).

    CAS  Article  Google Scholar 

  23. 23.

    Jow, T. R. & Liang, C. C. Interface between solid electrode and solid electrolyte—a study of the Li/LiI(AI2O3) solid-electrolyte system. J. Electrochem. Soc. 130, 737–740 (1983).

    CAS  Article  Google Scholar 

  24. 24.

    Jow, T. R. & Liang, C. C. Interface between solid anode and solid electrolyte-effect of pressure on Li/LiI(Al2O3) interface.Solid State Ion. 9-10, 695–698 (1983).

    CAS  Article  Google Scholar 

  25. 25.

    Han, F. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

    CAS  Article  Google Scholar 

  26. 26.

    Krauskopf, T., Hartmann, H., Zeier, W. G. & Janek, J. Toward a fundamental understanding of the lithium metal anode in solid-state batteries—an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12.Appl. Interfaces Mater. 11, 14463–14477 (2019).

    CAS  Article  Google Scholar 

  27. 27.

    Zhang, Z. et al. New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 11, 1945–1976 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    Zheng, F., Kotobuki, M., Song, S., Lai, M. O. & Lu, L. Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources 389, 198–213 (2018).

    CAS  Article  Google Scholar 

  29. 29.

    Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Zhou, L. et al. Solvent-engineered design of argyrodite Li6PS5X (X = Cl, Br, I) solid electrolytes with high ionic conductivity. ACS Energy Lett. 4, 265–270 (2019).

    CAS  Article  Google Scholar 

  31. 31.

    Deng, Z., Wang, Z., Chu, I.-H., Luo, J. & Ong, S. P. Elastic properties of alkali superionic conductor electrolytes from first principles calculations. J. Electrochem. Soc. 163, A67–A74 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Yu, C., van Eijck, L., Ganapathy, S. & Wagemaker, M. Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries. Electrochim. Acta 215, 93–99 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Wenzel, S., Sedlmaier, S. J., Dietrich, C., Zeier, W. G. & Janek, J. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ion. 318, 102–112 (2018).

    CAS  Article  Google Scholar 

  34. 34.

    Wu, E. A. et al. New insights into the interphase between the Na metal anode and sulfide solid-state electrolytes: a joint experimental and computational study. ACS Appl. Mater. Interfaces 10, 10076–10086 (2018).

    CAS  Article  Google Scholar 

  35. 35.

    Zhu, Y., He, X. & Mo, Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Wang, M., Wolfenstine, J. B. & Sakamoto, J. Temperature dependent flux balance of the Li/Li7La3Zr2O12 Interface. Electrochim. Acta 296, 842–847 (2019).

    CAS  Article  Google Scholar 

  37. 37.

    Nemat‐Nasser, S. & Hori, M. Void collapse and void growth in crystalline solids. J. Appl. Phys. 62, 2746–2757 (1987).

    Article  Google Scholar 

  38. 38.

    Masias, A., Felten, N., Garcia-Mendez, R., Wolfenstine, J. & Sakamoto, J. Elastic, plastic, and creep mechanical properties of lithium metal. J. Mater. Sci. 54, 2585–2600 (2019).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

P.G.B. is indebted to the Faraday Institution All-Solid-State Batteries with Li and Na Anodes (FIRG007, FIRG008), as well as the Engineering and Physical Sciences Research Council (EPSRC), including the SUPERGEN Energy Storage Hub (EP/L019469/1), Enabling Next Generation Lithium Batteries (EP/M009521/1), the University of Oxford experimental equipment upgrade (EP/M02833X/1) and the Henry Royce Institute for capital equipment (EP/R010145/1) for financial support. The authors thank Dr Phil Holdway, Oxford Materials Characterisation Service, for help with XPS measurements.

Author information

Affiliations

Authors

Contributions

J.K. contributed to all aspects of the research. S.Z. performed the SEM experiments and analysed the data. D.S.J. performed electrochemical experiments and analysed the data. Z.N. performed synthesis of Li6PS5Cl and in situ tomography experiments. P.G.B., J.K., S.Z., D.S.J., Z.N., G.O.H. and J.M. interpreted the data. P.G.B. wrote the paper with contributions from J.K., S.Z., D.S.J., Z.N. and G.O.H. The project was supervised by P.G.B.

Corresponding author

Correspondence to Peter G. Bruce.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kasemchainan, J., Zekoll, S., Spencer Jolly, D. et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019). https://doi.org/10.1038/s41563-019-0438-9

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing