Electric field control of Néel spin–orbit torque in an antiferromagnet


Electric field control of spin–orbit torque in ferromagnets1 has been intensively pursued in spintronics to achieve efficient memory and computing devices with ultralow energy consumption. Compared with ferromagnets, antiferromagnets2,3 have huge potential in high-density information storage because of their ultrafast spin dynamics and vanishingly small stray field4,5,6,7. However, the manipulation of spin–orbit torque in antiferromagnets using electric fields remains elusive. Here we use ferroelastic strain from piezoelectric materials to switch the uniaxial magnetic anisotropy in antiferromagnetic Mn2Au films with an electric field of only a few kilovolts per centimetre at room temperature. Owing to the uniaxial magnetic anisotropy, we observe an asymmetric Néel spin–orbit torque8,9 in the Mn2Au, which is used to demonstrate an antiferromagnetic ratchet. The asymmetry of the Néel spin–orbit torque and the corresponding antiferromagnetic ratchet can be reversed by the electric field. Our finding sheds light on antiferromagnet-based memories with ultrahigh density and high energy efficiency.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic of ferroelastic strain switching of UMA driven by electric fields in antiferromagnet/PMN-PT(011) structure.
Fig. 2: E-dependent Mn L-edge XMLD signals of Mn2Au.
Fig. 3: Ratchet-like NSOT in Mn2Au with UMA.
Fig. 4: E-control of Jth for NSOT in Mn2Au.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.


  1. 1.

    Cai, K. M. et al. Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure. Nat. Mater. 16, 712–716 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347–351 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    Qiu, Z. Y. et al. Spin colossal magnetoresistance in an antiferromagnetic insulator. Nat. Mater. 17, 577–580 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Lebrun, R. et al. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature 561, 222–225 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Bodnar, S. Y. et al. Writing and reading antiferromagnetic Mn2Au by Néel spin–orbit torques and large anisotropic magnetoresistance. Nat. Commun. 9, 348 (2018).

    Article  Google Scholar 

  10. 10.

    Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    CAS  Article  Google Scholar 

  11. 11.

    Liu, L. Q. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    Parkin, S. S. P. et al. Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory. J. Appl. Phys. 85, 5828–5833 (1999).

    CAS  Article  Google Scholar 

  13. 13.

    Wang, W. G., Li, M. E., Hageman, S. & Chien, C. L. Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11, 64–68 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    Kosub, T. et al. Purely antiferromagnetic magnetoelectric random access memory. Nat. Commun. 8, 13985 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Song, C., Cui, B., Li, F., Zhou, X. J. & Pan, F. Recent progress in voltage control magnetism: materials, mechanisms, and performance. Prog. Mater. Sci. 87, 33–82 (2017).

    Article  Google Scholar 

  16. 16.

    Zhao, T. et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823–829 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    Wang, Y. Y. et al. Electrical control of the exchange spring in antiferromagnetic metals. Adv. Mater. 27, 3196–3201 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Cherifi, R. O. et al. Electric-field control of magnetic order above room temperature. Nat. Mater. 13, 345–351 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Yan, H. et al. A piezoelectric, strain-controlled antiferromagnetic memory insensitive to magnetic fields. Nat. Nanotechnol. 14, 131–136 (2019).

    CAS  Article  Google Scholar 

  20. 20.

    Liu, M. et al. Voltage-impulse-induced non-volatile ferroelastic switching of ferromagnetic resonance for reconfigurable magnetoelectric microwave devices. Adv. Mater. 25, 4886 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    Zhang, S. et al. Giant electrical modulation of magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(011) heterostructure. Sci. Rep. 4, 3727 (2014).

    Article  Google Scholar 

  22. 22.

    Shick, A. B., Khmelevskyi, S., Mryasov, O. N., Wunderlich, J. & Jungwirth, T. Spin-orbit coupling induced anisotropy effects in bimetallic antiferromagnets: a route towards antiferromagnetic spintronics. Phys. Rev. B 81, 212409 (2010).

    Article  Google Scholar 

  23. 23.

    Jourdan, M. et al. Epitaxial Mn2Au thin films for antiferromagnetic spintronics. J. Phys. D 48, 385001 (2015).

    Article  Google Scholar 

  24. 24.

    Sapozhnik, A. A. et al. Manipulation of antiferromagnetic domain distribution in Mn2Au by ultrahigh magnetic fields and by strain. Phys. Status Solidi Rapid Res. Lett. 11, 1600438 (2017).

    Article  Google Scholar 

  25. 25.

    Barthem, V. M. T. S., Colin, C. V., Haettel, R., Dufeu, D. & Givord, D. Easy moment direction and antiferromagnetic domain wall motion in Mn2Au. J. Magn. Magn. Mater. 406, 289–292 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Sapozhnik, A. A. et al. Direct imaging of antiferromagnetic domains in Mn2Au manipulated by high magnetic fields. Phys. Rev. B 97, 134429 (2017).

    Article  Google Scholar 

  27. 27.

    Wang, Y. Y., Song, C., Wang, G. Y., Zeng, F. & Pan, F. Evidence for asymmetric rotation of spins in antiferromagnetic exchange-spring. New J. Phys. 16, 123032 (2014).

    Article  Google Scholar 

  28. 28.

    Chen, X. Z. et al. Antidamping-torque-induced switching in biaxial antiferromagnetic insulators. Phys. Rev. Lett. 120, 207204 (2018).

    CAS  Article  Google Scholar 

  29. 29.

    Moriyama, T., Zhou, W. N., Seki, T., Takanashi, K. & Ono, T. Spin-orbit-torque memory operation of synthetic antiferromagnets. Phys. Rev. Lett. 121, 167202 (2018).

    CAS  Article  Google Scholar 

  30. 30.

    Hänggi, P. & Marchesoni, F. Artificial Brownian motors: controlling transport on the nanoscale. Rev. Mod. Phys. 81, 387–442 (2009).

    Article  Google Scholar 

Download references


We are grateful for discussions with J. H. Han, D. Z. Hou and P. Yu. C.S. acknowledges the support of the Beijing Innovation Center for Future Chips, Tsinghua University and the Young Chang Jiang Scholars Programme. The XMLD measurements were carried out at Beamline BL08U1A of SSRF. This work was supported by the National Key R&D Programme of China (grant no. 2017YFB0405704), the National Natural Science Foundation of China (grant nos. 51871130, 51571128, 51671110 and 51831005) and the 973 project of the Ministry of Science and Technology of China (grant no. 2015CB921402).

Author information




C.S. and X.C. designed the experiment; X.C. and X.Z. fabricated the samples and collected all of the data. X.C., Y.B., H.L., Y.S., Y.Y. and Y.Z. analysed the data. R.C., J.Z. and Y.W. contribute to theoretical support. C.S. and F.P. supervised this study. All the authors discussed the results and prepared the manuscript.

Corresponding authors

Correspondence to Cheng Song or Feng Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Supplementary Table 1 and Supplementary refs. 1–12.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhou, X., Cheng, R. et al. Electric field control of Néel spin–orbit torque in an antiferromagnet. Nat. Mater. 18, 931–935 (2019). https://doi.org/10.1038/s41563-019-0424-2

Download citation

Further reading


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing