Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum jamming transition to a correlated electron glass in 1T-TaS2


Distinct many-body states may be created under non-equilibrium conditions through different ordering paths, even when their constituents are subjected to the same fundamental interactions. The phase-transition mechanism to such states remains poorly understood. Here, we show that controlled optical or electromagnetic perturbations can lead to an amorphous metastable state of strongly correlated electrons in a quasi-two-dimensional dichalcogenide. Scanning tunnelling microscopy reveals a hyperuniform pattern of localized charges, whereas multitip surface nanoscale conductivity measurements and tunnelling spectroscopy show an electronically gapless conducting state that is different from conventional Coulomb glasses and many-body localized systems. The state is stable up to room temperature and shows no signs of either local charge order or phase separation. The mechanism for its formation is attributed to a dynamical localization of electrons through mutual interactions. Theoretical calculations confirm the correlations between localized charges to be crucial for the state’s unusual stability.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Structure, experiment and basic observation by STM of the initial and final states of polarons after excitation by a single laser pulse.
Fig. 2: Distances in between polarons and atoms.
Fig. 3: Electronic properties from tunnelling spectroscopy and transport measurements.
Fig. 4: Tiling patterns formed by polarons in the A state, comparing experiment (a,c) and theory (b,d).

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Code used for the Monte Carlo simulations is available from the corresponding author upon reasonable request.


  1. 1.

    Zurek, W. Cosmological experiments in superfluid helium? Nature 317, 505 (1985).

    CAS  Article  Google Scholar 

  2. 2.

    Cavalleri, A. et al. Femtosecond structural dynamics in VO2 during an ultrafast solid–solid phase transition. Phys. Rev. Lett. 87, 237401 (2001).

    CAS  Article  Google Scholar 

  3. 3.

    Nasu, K., Ping, H. & Mizouchi, H. Photoinduced structural phase transitions and their dynamics. J. Phys. Condens. Mat. 13, R693–R721 (2001).

    CAS  Article  Google Scholar 

  4. 4.

    Iwai, S. et al. Photoinduced melting of a stripe-type charge-order and metallic domain formation in a layered BEDT-TTF-based organic salt. Phys. Rev. Lett. 98, 097402 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    Schmitt, F. et al. Transient electronic structure and melting of a charge density wave in TbTe3. Science 321, 1649–1652 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    Yusupov, R. et al. Coherent dynamics of macroscopic electronic order through a symmetry breaking transition. Nat. Phys. 6, 681–684 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973).

    CAS  Article  Google Scholar 

  8. 8.

    Anderson, P. W. Through the glass lightly. Science 267, 1615–1616 (1995).

    CAS  Article  Google Scholar 

  9. 9.

    Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Giannetti, C. et al. Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach. Adv. Phys. 65, 58–238 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Koshihara, S. et al. Photoinduced valence instability in the organic molecular compound tetrathiafulvalene-p-chloranil (TTF-CA). Phys. Rev. B 42, 6853–6856 (1990).

    CAS  Article  Google Scholar 

  12. 12.

    Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Zhang, J. et al. Cooperative photoinduced metastable phase control in strained manganite films. Nat. Mater. 15, 956–960 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Gerasimenko, Y. A., Karpov, P., Vaskivskyi, I., Brazovskii, S. & Mihailovic, D. Intertwined chiral charge orders and topological stabilization of the light-induced state of a prototypical transition metal dichalcogenide. npj Quantum Mater. 4, 32 (2019).

    Article  Google Scholar 

  17. 17.

    Ravnik, J., Vaskivskyi, I., Mertelj, T. & Mihailović, D. Real-time observation of the coherent transition to a metastable emergent state in 1T-TaS2. Phys. Rev. B 97, 075304 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    Nakanishi, K. & Shiba, H. Domain-like incommensurate charge-density-wave states and the first-order incommensurate–commensurate transitions in layered tantalum dichalcogenides. I. 1T-polytype. J. Phys. Soc. Jpn 43, 1839 (1977).

    CAS  Article  Google Scholar 

  19. 19.

    Tosatti, E. & Fazekas, P. On the nature of the low-temperature phase of 1T-TaS2. J. Phys. Colloques 37, C4-165–168 (1976).

    Article  Google Scholar 

  20. 20.

    Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. Condens. Mat. 23, 213001 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    Ritschel, R. et al. Orbital textures and charge density waves in transition metal dichalcogenides. Nat. Phys. 11, 328–331 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2. Nat. Mater. 7, 960–965 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    Klanjsek, M. et al. A high-temperature quantum spin liquid with polaron spins. Nat. Phys. 13, 1130–1134 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Han, T.-R. T. et al. Exploration of metastability and hidden phases in correlated electron crystals visualized by femtosecond optical doping and electron crystallography. Sci. Adv. 1, e1400173 (2015).

    Article  Google Scholar 

  25. 25.

    Torquato, S. & Stillinger, F. H. Local density fluctuations, hyperuniformity, and order metrics. Phys. Rev. E 68, 411131–4111325 (2003).

    Google Scholar 

  26. 26.

    Torquato, S. Hyperuniformity and its generalizations. Phys. Rev. E 94, 022122 (2016).

    Article  Google Scholar 

  27. 27.

    Ma, Z. & Torquato, S. Random scalar fields and hyperuniformity. J. Appl. Phys. 121, 244904 (2016).

    Article  Google Scholar 

  28. 28.

    Lesanovsky, Y. & Garrahan, J. P. Out-of-equilibrium structures in strongly interacting Rydberg gases with dissipation. Phys. Rev. A 90, 011603 (2014).

    Article  Google Scholar 

  29. 29.

    Jiao, Y. et al. Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem. Phys. Rev. E 89, 022721 (2014).

    Article  Google Scholar 

  30. 30.

    Getzin, S. et al. Discovery of fairy circles in Australia supports self-organization theory. Proc. Natl Acad. Sci. USA 113, 3551–3556 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Torquato, S., Scardicchio, A. & Zachary, C. E. Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory. J. Stat. Mech. Theory Exp. 2008, P11019 (2008).

    Article  Google Scholar 

  32. 32.

    Karpov, P. & Brazovskii, S. Modeling of networks and globules of charged domain walls observed in pump and pulse induced states. Sci. Rep. 8, 4043 (2018).

    Article  Google Scholar 

  33. 33.

    Dean, N. et al. Polaronic conductivity in the photoinduced phase of 1T-TaS2. Phys. Rev. Lett. 106, 016401 (2011).

    CAS  Article  Google Scholar 

  34. 34.

    Havlin, S. & Ben-Avraham, D. Diffusion in disordered media. Adv. Phys. 51, 187 (2002).

    CAS  Article  Google Scholar 

  35. 35.

    Burov, S., Metzler, R. & Barkai, E. Aging and nonergodicity beyond the Khinchin theorem. Proc. Natl Acad. Sci. USA 107, 13228 (2010).

    CAS  Article  Google Scholar 

  36. 36.

    Shklovskii, B. I. & Efros, A. L. Electronic Properties of Doped Semiconductors Vol. 45 (Springer, 1984).

  37. 37.

    Wang, Z. et al. Disorder induced power-law gaps in an insulator–metal Mott transition. Proc. Natl Acad. Sci. USA 115, 11198–11202 (2018).

    CAS  Article  Google Scholar 

  38. 38.

    Hellmann, S. et al. Time-domain classification of charge-density-wave insulators. Nat. Comms. 3, 1069 (2012).

    CAS  Article  Google Scholar 

  39. 39.

    Cho, D. et al. Nanoscale manipulation of the Mott insulating state coupled to charge order in 1T-TaS2. Nat. Comms. 7, 10956 (2016).

    Article  Google Scholar 

  40. 40.

    Ma, L. et al. A metallic mosaic phase and the origin of Mott-insulating state in 1T-TaS2. Nat. Commun. 7, 10453 (2016).

    Article  Google Scholar 

  41. 41.

    Svetin, D., Vaskivskyi, I., Brazovskii, S. & Mihailovic, D. Three-dimensional resistivity switching between correlated electronic states in 1T-TaS2. Sci. Rep. 7, 46048 (2017).

    CAS  Article  Google Scholar 

  42. 42.

    Mishima, O., Calvert, L. D. & Whalley, E. ‘Melting ice I’ at 77 K and 10 kbar: a new method of making amorphous solids. Nature 310, 393–395 (1984).

    CAS  Article  Google Scholar 

  43. 43.

    Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010).

    CAS  Article  Google Scholar 

  44. 44.

    De Roeck, W. & Imbrie, J. Z. Many-body localization: stability and instability. Phil. Trans. R. Soc. A 375, 20160422 (2017).

    Article  Google Scholar 

  45. 45.

    Mahmoudian, S., Rademaker, L., Ralko, A., Fratini, S. & Dobrosavljević, V. Glassy dynamics in geometrically frustrated Coulomb liquids without disorder. Phys. Rev. Lett. 115, 025701 (2015).

    Article  Google Scholar 

  46. 46.

    Smith, A., Knolle, J., Kovrizhin, D. L. & Moessner, R. Disorder-free localization. Phys. Rev. Lett. 118, 266601 (2017).

    CAS  Article  Google Scholar 

  47. 47.

    Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Ann. Rev. Cond. Mat. Phys. 6, 15–38 (2015).

    Article  Google Scholar 

  48. 48.

    Rademaker, L., Pramudya, Y., Zaanen, J. & Dobrosavljević, V. Influence of long-range interactions on charge ordering phenomena on a square lattice. Phys. Rev. E 88, 032121 (2013).

    Article  Google Scholar 

  49. 49.

    Hanaguri, T. et al. A ‘checkerboard’ electronic crystal state in lightly hole-doped Ca2−xNaxCuO2Cl2. Nature 430, 1001–1005 (2004).

    CAS  Article  Google Scholar 

  50. 50.

    Schmalian, J. & Wolynes, P. Stripe glasses: self-generated randomness in a uniformly frustrated system. Phys. Rev. Lett. 85, 836–839 (2000).

    CAS  Article  Google Scholar 

  51. 51.

    Metropolis, N. et al. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953).

    CAS  Article  Google Scholar 

  52. 52.

    Mertelj, T., Kabanov, V. V. & Mihailović, D. Charged particles on a two-dimensional lattice subject to anisotropic Jahn–Teller interactions. Phys. Rev. Lett. 94, 147003 (2005).

    CAS  Article  Google Scholar 

  53. 53.

    Hukushima, K. & Nemoto, K. Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn 65, 1604–1608 (1996).

    CAS  Article  Google Scholar 

Download references


We thank T. Prosen, J. Bonča, P. Prelovšek, R. Žitko, T. Mertelj, S. Brazovskii, V. Dobrosavljevic, N. Gedik and P. Karpov for useful discussions, J. Mravlje for band structure data and P. Sutar for the synthesis and characterization of the samples. Funding from ERC-2012-ADG-20120216 ‘Trajectory’ is acknowledged.

Author information




I.V. made the original discovery, and D.M. and Y.A.G. led the project, wrote the paper and performed the analysis. Y.A.G., M.L. and I.V. performed STM measurements, Y.A.G., M.D. and J.R. did the multitip measurements. J.V. and V.K. performed theoretical calculations. All the authors contributed to the Supplementary Information.

Corresponding authors

Correspondence to Yaroslav A. Gerasimenko or Dragan Mihailovic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–8, Supplementary Figs. 1–18 and Supplementary Refs. 1–29.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gerasimenko, Y.A., Vaskivskyi, I., Litskevich, M. et al. Quantum jamming transition to a correlated electron glass in 1T-TaS2. Nat. Mater. 18, 1078–1083 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing