Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-term implant fibrosis prevention in rodents and non-human primates using crystallized drug formulations

Abstract

Implantable medical devices have revolutionized modern medicine. However, immune-mediated foreign body response (FBR) to the materials of these devices can limit their function or even induce failure. Here we describe long-term controlled-release formulations for local anti-inflammatory release through the development of compact, solvent-free crystals. The compact lattice structure of these crystals allows for very slow, surface dissolution and high drug density. These formulations suppress FBR in both rodents and non-human primates for at least 1.3 years and 6 months, respectively. Formulations inhibited fibrosis across multiple implant sites—subcutaneous, intraperitoneal and intramuscular. In particular, incorporation of GW2580, a colony stimulating factor 1 receptor inhibitor, into a range of devices, including human islet microencapsulation systems, electrode-based continuous glucose-sensing monitors and muscle-stimulating devices, inhibits fibrosis, thereby allowing for extended function. We believe that local, long-term controlled release with the crystal formulations described here enhances and extends function in a range of medical devices and provides a generalized solution to the local immune response to implanted biomaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anti-fibrotic drug screen testing agents largely targeted to macrophage biology.
Fig. 2: Crystal development and characterization.
Fig. 3: In vitro release and in vivo anti-fibrotic efficacy.
Fig. 4: Long-term anti-fibrotic efficacy in NHPs.
Fig. 5: Long-term glycemic control with crystalline GW2580.
Fig. 6: Long-term drug depot effects of GW2580 crystals.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its supplementary information files and from the corresponding author upon reasonable request.

References

  1. Fattahi, P., Yang, G., Kim, G. & Abidian, M. R. A review of organic and inorganic biomaterials for neural interfaces. Adv. Mater. 26, 1846–1885 (2014).

    Article  CAS  Google Scholar 

  2. Nichols, S. P., Koh, A., Storm, W. L., Shin, J. H. & Schoenfisch, M. H. Biocompatible materials for continuous glucose monitoring devices. Chem. Rev. 113, 2528–2549 (2013).

    Article  CAS  Google Scholar 

  3. Rosen, M. R., Robinson, R. B., Brink, P. R. & Cohen, I. S. The road to biological pacing. Nat. Rev. Cardiol. 8, 656–666 (2011).

    Article  Google Scholar 

  4. Farra, R. et al. First-in-human testing of a wirelessly controlled drug delivery microchip. Sci. Transl. Med. 4, 122ra121 (2012).

    Article  CAS  Google Scholar 

  5. Hubbell, J. A. & Langer, R. Translating materials design to the clinic. Nat. Mater. 12, 963–966 (2013).

    Article  CAS  Google Scholar 

  6. Kearney, C. J. & Mooney, D. J. Macroscale delivery systems for molecular and cellular payloads. Nat. Mater. 12, 1004–1017 (2013).

    Article  CAS  Google Scholar 

  7. Yoo, J. W., Irvine, D. J., Discher, D. E. & Mitragotri, S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 10, 521–535 (2011).

    Article  CAS  Google Scholar 

  8. Kenneth Ward, W. A review of the foreign-body response to subcutaneously-implanted devices: the role of macrophages and cytokines in biofouling and fibrosis. J. Diabetes Sci. Technol. 2, 768–777 (2008).

    Article  CAS  Google Scholar 

  9. Anderson, J. M., Rodriguez, A. & Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008).

    Article  CAS  Google Scholar 

  10. Doloff, J. C. et al. Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates. Nat. Mater. 16, 671–680 (2017).

    Article  CAS  Google Scholar 

  11. Vegas, A. J. et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol. 34, 345–352 (2016).

    Article  CAS  Google Scholar 

  12. Veiseh, O. et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–651 (2015).

    Article  CAS  Google Scholar 

  13. Rhen, T. & Cidlowski, J. A. Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. N. Engl. J. Med. 353, 1711–1723 (2005).

    Article  CAS  Google Scholar 

  14. Schneider, B. L., Schwenter, F., Pralong, W. F. & Aebischer, P. Prevention of the initial host immuno-inflammatory response determines the long-term survival of encapsulated myoblasts genetically engineered for erythropoietin delivery. Mol. Ther. 7, 506–514 (2003).

    Article  CAS  Google Scholar 

  15. Zhang, W. J. et al. HOE 077 reduces fibrotic overgrowth around the barium alginate microcapsules. Transplant. Proc. 32, 206–209 (2000).

    Article  CAS  Google Scholar 

  16. Attur, M. G. et al. Differential anti-inflammatory effects of immunosuppressive drugs: cyclosporin, rapamycin and FK-506 on inducible nitric oxide synthase, nitric oxide, cyclooxygenase-2 and PGE 2 production. Inflamm. Res. 49, 20–26 (2000).

    Article  CAS  Google Scholar 

  17. Cannarile, M. A. et al. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J. Immunother. Cancer 5, 53 (2017).

    Article  Google Scholar 

  18. Wehling, M. Non-steroidal anti-inflammatory drug use in chronic pain conditions with special emphasis on the elderly and patients with relevant comorbidities: management and mitigation of risks and adverse effects. Eur. J. Clin. Pharmacol. 70, 1159–1172 (2014).

    Article  CAS  Google Scholar 

  19. Srinivasan, A. & De Cruz, P. Review article: a practical approach to the clinical management of NSAID enteropathy. Scand. J. Gastroenterol. 52, 941–947 (2017).

    Google Scholar 

  20. Lin, J. et al. TNFα blockade in human diseases: an overview of efficacy and safety. Clin. Immunol. 126, 13–30 (2008).

    Article  CAS  Google Scholar 

  21. Gyorfi, A. H., Matei, A. E. & Distler, J. H. W. Targeting TGF-β signaling for the treatment of fibrosis. Matrix Biol. 68–69, 8–27 (2018).

    Article  CAS  Google Scholar 

  22. Murray, P. J. & Wynn, T. A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723–737 (2011).

    Article  CAS  Google Scholar 

  23. Dang, T. T. et al. Spatiotemporal effects of a controlled-release anti-inflammatory drug on the cellular dynamics of host response. Biomaterials 32, 4464–4470 (2011).

    Article  CAS  Google Scholar 

  24. Singarayar, S., Kistler, P. M., De Winter, C. & Mond, H. A comparative study of the action of dexamethasone sodium phosphate and dexamethasone acetate in steroid-eluting pacemaker leads. Pacing Clin. Electrophysiol. 28, 311–315 (2005).

    Article  Google Scholar 

  25. Friedl, K. E. Corticosteroid modulation of tissue responses to implanted sensors. Diabetes Technol. Ther. 6, 898–901 (2004).

    Article  Google Scholar 

  26. Gilligan, B. C. et al. Feasibility of continuous long-term glucose monitoring from a subcutaneous glucose sensor in humans. Diabetes Technol. Ther. 6, 378–386 (2004).

    Article  CAS  Google Scholar 

  27. Vacanti, N. M. et al. Localized delivery of dexamethasone from electrospun fibers reduces the foreign body response. Biomacromolecules 13, 3031–3038 (2012).

    Article  CAS  Google Scholar 

  28. Weldon, C. B. et al. Electrospun drug-eluting sutures for local anesthesia. J. Control. Release 161, 903–909 (2012).

    Article  CAS  Google Scholar 

  29. Ricci, M. et al. Ketoprofen controlled release from composite microcapsules for cell encapsulation: effect on post-transplant acute inflammation. J. Control. Release 107, 395–407 (2005).

    Article  CAS  Google Scholar 

  30. Einmahl, S. et al. Concomitant and controlled release of dexamethasone and 5-fluorouracil from poly (ortho ester). Int. J. Pharm. 185, 189–198 (1999).

    Article  CAS  Google Scholar 

  31. Siepmann, J., Siegel, R. A. & Rathbone, M. J. (eds) Advances in Delivery Science and Technology (Springer, 2012).

  32. Bain, C. C. et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat. Immunol. 15, 929–937 (2014).

    Article  CAS  Google Scholar 

  33. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    Article  CAS  Google Scholar 

  34. Singh, M. N., Hemant, K. S., Ram, M. & Shivakumar, H. G. Microencapsulation: a promising technique for controlled drug delivery. Res. Pharm. Sci. 5, 65–77 (2010).

    CAS  Google Scholar 

  35. Cobelli, N., Scharf, B., Crisi, G. M., Hardin, J. & Santambrogio, L. Mediators of the inflammatory response to joint replacement devices. Nat. Rev. Rheumatol. 7, 600–608 (2011).

    Article  CAS  Google Scholar 

  36. Desbois, S., Seabrook, S. A. & Newman, J. Some practical guidelines for UV imaging in the protein crystallization laboratory. Acta Crystallogr. F 69, 201–208 (2013).

    Article  CAS  Google Scholar 

  37. Niedzialkowska, E. et al. Protein purification and crystallization artifacts: the tale usually not told. Protein Sci. 25, 720–733 (2016).

    Article  CAS  Google Scholar 

  38. Farah, S., Khan, W. & Domb, A. J. Crystalline coating of rapamycin onto a stent: process development and characterization. Int. J. Pharm. 445, 20–28 (2013).

    Article  CAS  Google Scholar 

  39. Levy, Y., Khan, W., Farah, S. & Domb, A. J. Surface crystallization of rapamycin on stents using a temperature induced process. Langmuir 28, 6207–6210 (2012).

    Article  CAS  Google Scholar 

  40. Puhl, S., Meinel, L. & Germershaus, O. Recent advances in crystalline and amorphous particulate protein formulations for controlled delivery. Asian J. Pharm. Sci. 11, 469–477 (2016).

    Article  Google Scholar 

  41. Yaghmur, A., Rappolt, M., Ostergaard, J., Larsen, C. & Larsen, S. W. Characterization of bupivacaine-loaded formulations based on liquid crystalline phases and microemulsions: the effect of lipid composition. Langmuir 28, 2881–2889 (2012).

    Article  CAS  Google Scholar 

  42. Farah, S. Protective layer development for enhancing stability and drug-delivery capabilities of DES surface-crystallized coatings. ACS Appl. Mater. Interfaces 10, 9010–9022 (2018).

    Article  CAS  Google Scholar 

  43. Kalepu, S. & Nekkanti, V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm. Sin. B 5, 442–453 (2015).

    Article  Google Scholar 

  44. Dang, T. T. et al. Enhanced function of immuno-isolated islets in diabetes therapy by co-encapsulation with an anti-inflammatory drug. Biomaterials 34, 5792–5801 (2013).

    Article  CAS  Google Scholar 

  45. Wu, P. & Grainger, D. W. Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials 27, 2450–2467 (2006).

    Article  CAS  Google Scholar 

  46. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    Article  CAS  Google Scholar 

  47. Chadha, R., Arora, P., Saini, A. & Jain, D. S. Solvated crystalline forms of nevirapine: thermoanalytical and spectroscopic studies. AAPS PharmSciTech 11, 1328–1339 (2010).

    Article  CAS  Google Scholar 

  48. Chadha, R., Kuhad, A., Arora, P. & Kishor, S. Characterisation and evaluation of pharmaceutical solvates of Atorvastatin calcium by thermoanalytical and spectroscopic studies. Chem. Cent. J. 6, 114 (2012).

    Article  CAS  Google Scholar 

  49. Olafson, K. N., Ketchum, M. A., Rimer, J. D. & Vekilov, P. G. Mechanisms of hematin crystallization and inhibition by the antimalarial drug chloroquine. Proc. Natl Acad. Sci. USA 112, 4946–4951 (2015).

    Article  CAS  Google Scholar 

  50. Datta, S. & Grant, D. J. Crystal structures of drugs: advances in determination, prediction and engineering. Nat. Rev. Drug Discov. 3, 42–57 (2004).

    Article  CAS  Google Scholar 

  51. Kempster, C. J. E. & Lipson, H. A rapid method for assessing the number of molecules in the unit cell of an organic crystal. Acta Crystallogr. B 28.12, 3674–3674 (1972).

    Article  Google Scholar 

  52. de Groot, M., Schuurs, T. A. & van Schilfgaarde, R. Causes of limited survival of microencapsulated pancreatic islet grafts. J. Surg. Res. 121, 141–150 (2004).

    Article  CAS  Google Scholar 

  53. Pepper, A. R. et al. A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat. Biotechnol. 33, 518–523 (2015).

    Article  CAS  Google Scholar 

  54. Simeonovic, C. J., Dhall, D. P., Wilson, J. D. & Lafferty, K. J. A comparative study of transplant sites for endocrine tissue transplantation in the pig. Aust. J. Exp. Biol. Med. Sci. 64, 37–41 (1986).

    Article  Google Scholar 

  55. Georgiev, A. et al. in High Performance Polymers—Polyimides Based: From Chemistry to Applications (ed. Abadie, J. M.) Ch. 4 (Intech, 2012).

  56. SAINT (Bruker AXS, 2011).

  57. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 48, 3–10 (2015).

    Article  CAS  Google Scholar 

  58. Sheldrick, G. M. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    Article  CAS  Google Scholar 

  59. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

    Article  CAS  Google Scholar 

  60. Müller, P. Practical suggestions for better crystal structures. Crystallogr. Rev. 15, 57–83 (2009).

    Article  CAS  Google Scholar 

  61. Lacy, P. E. & Kostianovsky, M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 16, 35–39 (1967).

    Article  CAS  Google Scholar 

  62. Ricordi, C. et al. Islet isolation assessment in man and large animals. Acta Diabetol. Lat. 27, 185–195 (1990).

    Article  CAS  Google Scholar 

  63. Bratlie, K. M. et al. Rapid biocompatibility analysis of materials via in vivo fluorescence imaging of mouse models. PLoS ONE 5, e10032 (2010).

    Article  CAS  Google Scholar 

  64. Xie, X. et al. Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer. Nat. Biomed. Eng. 2, 894–906 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work was supported by: JDRF-Juvenile Diabetes Research Foundation Grant 17-2007-1063, National Institutes of Health Grants: DE013023, EB000244, CA151884 and EB000351, Leona M. and Harry B. Helmsley Charitable Trust Foundation Grants: 2015PG-T1D063 and 09PG-T1D027, and through a gift from the Tayebati Family Foundation. J.C.D. was supported by postdoctoral fellowship from JDRF (Fellowship: 3-PDF-2015-91-A-N). J.O. is supported by the Chicago Diabetes Project and the National Institutes of Health (NIH/NIDDK) R01DK091526. G.C.W. is supported by the National Institutes of Health Diabetes Research Centers Grant P30 DK 36836. D.L.G. is supported by the National Institutes of Health (NIH/NIDDK) UC4 DK104218. We acknowledge the use of resources at Core Facilities (Swanson Biotechnology Center, David H. Koch Institute for Integrative Cancer Research at MIT) and W. M. Keck Biological Imaging Facility for Flow Cytometry, Histology, in situ Accelerated Release Microscopy (Wendy C. Salmon, Whitehead Institute), Animal Imaging, and Scanning Electron Microscopy.

Author information

Authors and Affiliations

Authors

Contributions

S.F., J.C.D., and D.G.A. designed the studies, analysed data and wrote the paper. S.F., J.C.D., P.M., A.S., H.J.H., K.O., K.V., H.H.T., J.H.-L., P.S.K., M.G., A.M., M.M., A.C.G., J.M. and J.O. conducted the experiments. S.F. and J.C.D. carried out the statistical analyses and prepared displays communicating data sets. G.C.W. and D.L.G. provided advice and technical support throughout. R.L. and D.G.A. supervised the study. All authors discussed the results and the preparation of the paper.

Corresponding author

Correspondence to Daniel G. Anderson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21, Supplementary Video captions 1–3, Supplementary Discussions 1–4 and Supplementary references

Reporting Summary

Supplementary Video 1

In situ monitoring MII and MIII crystals stability and release with fluorescent microscope

Supplementary Video 2

Laparoscopic evaluation and 4-week retrievals of implanted ~0.5 mm capsule without drug in non-human primates

Supplementary Video 3

Laparoscopic evaluation and 4-week retrievals of implanted ~0.5 mm capsule with GW2580 crystals in non-human primates

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farah, S., Doloff, J.C., Müller, P. et al. Long-term implant fibrosis prevention in rodents and non-human primates using crystallized drug formulations. Nat. Mater. 18, 892–904 (2019). https://doi.org/10.1038/s41563-019-0377-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0377-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research