Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gap suppression at a Lifshitz transition in a multi-condensate superconductor

Abstract

In multi-orbital materials, superconductivity can exhibit several coupled condensates. In this context, quantum confinement in two-dimensional superconducting oxide interfaces offers new degrees of freedom to engineer the band structure and selectively control the occupancy of 3d orbitals by electrostatic doping. Here, we use resonant microwave transport to extract the superfluid stiffness of the (110)-oriented LaAlO3/SrTiO3 interface in the entire phase diagram. We provide evidence of a transition from single-condensate to two-condensate superconductivity driven by continuous and reversible electrostatic doping, which we relate to the Lifshitz transition between 3d bands based on numerical simulations of the quantum well. We find that the superconducting gap is suppressed while the second band is populated, challenging Bardeen–Cooper–Schrieffer theory. We ascribe this behaviour to the existence of superconducting order parameters with opposite signs in the two condensates due to repulsive coupling. Our findings offer an innovative perspective on the possibility to tune and control multiple-orbital physics in superconducting interfaces.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Superconductivity and multi-band transport in (110)-oriented LaAlO3/SrTiO3 interfaces.
Fig. 2: Resonant microwave transport in the superconducting state.
Fig. 3: Superfluid stiffness in the UD and OD regimes.
Fig. 4: Single-condensate to two-condensate superconductivity transition in the superfluid stiffness.
Fig. 5: Superconducting phase diagram.

Data availability

All data that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article  CAS  Google Scholar 

  2. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Article  CAS  Google Scholar 

  3. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

    Article  CAS  Google Scholar 

  4. Biscaras, J. et al. Two-dimensional superconductivity at a Mott insulator/band insulator interface LaTiO3/SrTiO3. Nat. Commun. 1, 89 (2010).

    Article  CAS  Google Scholar 

  5. Popovic, Z. S., Satpathy, S. & Martin, R. M. Origin of the two-dimensional electron gas carrier density at the LaAlO3 on SrTiO3 interface. Phys. Rev. Lett. 101, 256801 (2008).

    Article  Google Scholar 

  6. Delugas, P. et al. Spontaneous 2-dimensional carrier confinement at the n-type SrTiO3/LaAlO3 interface. Phys. Rev. Lett. 106, 166807 (2011).

    Article  Google Scholar 

  7. Pentcheva, R. & Pickett, W. Charge localization or itineracy at LaAlO3/SrTiO3 interfaces: hole polarons, oxygen vacancies and mobile electrons. Phys. Rev. B 74, 035112 (2006).

    Article  Google Scholar 

  8. Pavlenko, N., Kopp, T., Tsymbal, E., Sawatzky, G. & Mannhart, J. Magnetic and superconducting phases at the LaAlO3/SrTiO3 interface: the role of interfacial Ti 3d electrons. Phys. Rev. B 85, 020407(R) (2012).

    Article  Google Scholar 

  9. Scopigno, N. et al. Phase separation from electron confinement at oxide interfaces. Phys. Rev. Lett. 116, 026804 (2016).

    Article  CAS  Google Scholar 

  10. Salluzzo, M. et al. Orbital reconstruction and the two-dimensional electron gas at the LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 102, 166804 (2009).

    Article  CAS  Google Scholar 

  11. Seo, S. S. A. et al. Multiple conducting carriers generated in LaAlO3/SrTiO3 heterostructures. Appl. Phys. Lett. 95, 082107 (2009).

    Article  Google Scholar 

  12. Biscaras, J. et al. Two-dimensional superconductivity induced by high-mobility carrier doping in LaTiO3/SrTiO3 heterostructures. Phys. Rev. Lett. 108, 247004 (2012).

    Article  CAS  Google Scholar 

  13. Kim, J. S. et al. Nonlinear Hall effect and multichannel conduction in LaTiO3/SrTiO3 superlattices. Phys. Rev. B 82, 201407 (2010).

    Article  Google Scholar 

  14. Ohtsuka, R., Matvejeff, M., Nishio, N., Takahashi, R. & Lippmaa, M. Transport properties of LaTiO3/SrTiO3 heterostructures. Appl. Phys. Lett. 96, 192111 (2010).

    Article  Google Scholar 

  15. Caviglia, A. et al. Two-dimensional quantum oscillations of the conductance at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 105, 236802 (2010).

    Article  CAS  Google Scholar 

  16. Shalom, M. B., Ron, A., Palevski, A. & Dagan, Y. Shubnikov–de Haas oscillations in SrTiO3/LaAlO3 interface. Phys. Rev. Lett. 105, 206401 (2010).

    Article  Google Scholar 

  17. Yang, M. et al. High-field magneto-transport in two-dimensional electron gas LaAlO3/SrTiO3. Appl. Phys. Lett. 109, 122106 (2016).

    Article  Google Scholar 

  18. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article  CAS  Google Scholar 

  19. Neville, R. C., Hoeneisen, B. & Mead, C. A. Permittivity of strontium titanate. J. Appl. Phys. 43, 2124 (1972).

    Article  CAS  Google Scholar 

  20. Joshua, A., Pecker, S., Ruhman, J., Altman, E. & Ilani, S. A universal critical density underlying the physics of electrons at the LaAlO3/SrTiO3 interface. Nat. Commun. 3, 1129 (2012).

    Article  Google Scholar 

  21. Gariglio, S., Gabay, M. & Triscone, J.-M. Research update: conductivity and beyond at the LaAlO3/SrTiO3 interface. APL Mater. 4, 060701 (2016).

    Article  Google Scholar 

  22. Singh, G. et al. Competition between electron pairing and phase coherence in superconducting interfaces. Nat. Commun. 9, 407 (2018).

    Article  CAS  Google Scholar 

  23. Herranz, G. et al. Engineering two-dimensional superconductivity and Rashba spin–orbit coupling in LaAlO3/SrTiO3 quantum wells by selective orbital occupancy. Nat. Commun. 6, 6028 (2015).

    Article  CAS  Google Scholar 

  24. Richter, C. et al. Interface superconductor with gap behaviour like a high-temperature superconductor. Nature 502, 528–531 (2013).

    Article  CAS  Google Scholar 

  25. Bert, J. A. et al. Gate-tuned superfluid density at the superconducting LaAlO3/SrTiO3 interface. Phys. Rev. B 86, 060503(R) (2012).

    Article  Google Scholar 

  26. Monteiro, A. M. R. V. L. et al. Two-dimensional superconductivity at the (111) LaAlO3/SrTiO3 interface. Phys. Rev. B 96, 020504(R) (2017).

    Article  Google Scholar 

  27. Rout, P. K., Maniv, E. & Dagan, Y. Link between the superconducting dome and spin–orbit interaction in the (111) LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 119, 237002 (2017).

    Article  CAS  Google Scholar 

  28. Davis, S. et al. Superconductivity and frozen electronic states at the (111) LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 119, 237002 (2017).

    Article  Google Scholar 

  29. Biscaras, J. et al. Limit of the electrostatic doping in two-dimensional electron gases of LaXO3(X = Al,Ti)/SrTiO3. Sci. Rep. 4, 6788 (2014).

    Article  CAS  Google Scholar 

  30. Hurand, S. et al. Field-effect control of superconductivity and Rashba spin–orbit coupling in top-gated LaAlO3/SrTiO3 devices. Sci. Rep. 5, 12751 (2015).

    Article  CAS  Google Scholar 

  31. Singh, G. et al. Effect of disorder on superconductivity and Rashba spin–orbit coupling in LaAlO3/SrTiO3 interfaces. Phys. Rev. B 96, 024509 (2017).

    Article  Google Scholar 

  32. Mattis, C. & Bardeen, J. Theory of the anomalous skin effect in normal and superconducting metals. Phys. Rev. 111, 412 (1958).

    Article  Google Scholar 

  33. Dressel, M. Electrodynamics of metallic superconductors. Adv. Condens. Matter Phys. 2013, 104379 (2013).

    Article  Google Scholar 

  34. Kogan, V. G., Martin, C. & Prozorov, R. Superfluid density and specific heat within a self-consistent scheme for a two-band superconductor. Phys. Rev. B 80, 014507 (2009).

    Article  Google Scholar 

  35. Kim, H., Tanatar, M. A., Song, YooJang, Yong Seung Kwon, Y. S. & Prozorov, R. Nodeless two-gap superconducting state in single crystals of the stoichiometric iron pnictide LiFeAs. Phys. Rev. B 83, 100502(R) (2011).

    Article  Google Scholar 

  36. Binning, G., Baratoff, A., Hoenig, H. E. & Bednorz, J. C. Two-band superconductivity in Nb-doped SrTiO3. Phys. Rev. Lett. 45, 1352–1355 (1980).

    Article  Google Scholar 

  37. Fernandes, R. M., Haraldsen, J. T., Wölfle, P. & Balatsky, A. V. Two-band superconductivity in doped SrTiO3 films and interfaces. Phys. Rev. B 87, 014510 (2013).

    Article  Google Scholar 

  38. Trevisan, T. V., Schütt, M. & Fernandes, R. M. Unconventional multi-band superconductivity in bulk SrTiO3 and LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 121, 127002 (2018).

    Article  CAS  Google Scholar 

  39. Lin, X. et al. Critical doping for the onset of a two-band superconducting ground state in SrTiO3−δ. Phys. Rev. Lett. 112, 207002 (2014).

    Article  Google Scholar 

  40. Swartz, A. G. et al. Polaronic behavior in a weak-coupling superconductor. Proc. Natl Acad. Sci. USA 115, 1475–1480 (2018).

    Article  CAS  Google Scholar 

  41. Thiemann, M. et al. Single-gap superconductivity and dome of superfluid density in Nb-doped SrTiO3. Phys. Rev. Lett. 120, 237002 (2018).

    Article  CAS  Google Scholar 

  42. Pesquera, D. et al. Two-dimensional electron gases at LaAlO3/SrTiO3 interfaces: orbital symmetry and hierarchy engineered by crystal orientation. Phys. Rev. Lett. 113, 156802 (2014).

    Article  CAS  Google Scholar 

  43. Mazin, I. I., Singh, D. J., Johannes, M. D. & Du, M. H. Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1−xFx. Phys. Rev. Lett. 101, 057003 (2008).

    Article  CAS  Google Scholar 

  44. Hirschfeld, P. J., Korshunov, M. M. & Mazin, I. I. Gap symmetry and structure of Fe-based superconductors. Rep. Prog. Phys. 74, 124508 (2011).

    Article  Google Scholar 

  45. Wang, F. & Lee, D.-H. The electron-pairing mechanism of iron-based superconductors. Science 332, 200–204 (2011).

    Article  CAS  Google Scholar 

  46. Prozorov, R. & Kogan, V. G. London penetration depth in iron-based superconductors. Rep. Prog. Phys. 74, 124505 (2011).

    Article  Google Scholar 

  47. Hanaguri, T., Niitaka, S., Kuroki, K. & Takagi, H. Unconventional s-wave superconductivity in Fe(Se,Te). Science 328, 474–476 (2010).

    Article  CAS  Google Scholar 

  48. Sprau, P. O. et al. Discovery of orbital-selective cooper pairing in FeSe. Science 357, 75–80 (2017).

    Article  CAS  Google Scholar 

  49. Kogan, V. G. & Prozorov, R. Interband coupling and nonmagnetic interband scattering in ±s superconductors. Phys. Rev. B 93, 224515 (2016).

    Article  Google Scholar 

  50. Chen, C.-T., Tsuei, C. C., Ketchen, M. B., Ren, Z.-A. & Zhao, Z. X. Integer and half-integer flux-quantum transitions in a niobium-iron pnictide loop. Nat. Phys 6, 260–264 (2010).

    Article  CAS  Google Scholar 

  51. Bell, C. et al. Dominant mobility modulation by the electric field effect at the LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 103, 226802 (2009).

    Article  CAS  Google Scholar 

  52. Hemberger, J., Lunkenheimer, P., Viana, R., Bohmer, R. & Loidl, A. Electric-field-dependent dielectric constant and nonlinear susceptibility in SrTiO3. Phys. Rev. B 52, 13159 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank K. Behnia and J. Lorenzana for useful discussions. This work was supported by the Région Ile-de-France in the framework of CNano IdF, OXYMORE and Sesame programmes, by CNRS through a PICS programme (S2S) and ANR JCJC (Nano-SO2DEG). This work was supported by the Spanish MAT2017-85232-R, MAT2014-56063-C2-1-R and Severo Ochoa SEV-2015-0496 grants and the Generalitat de Catalunya (2017 SGR 1377). This work was supported by the Italian MAECI under the Italia–India collaborative project SUPERTOP-PGR04879. The authors acknowledge funding from the project Quantox of QuantERA ERA-NET Cofund in Quantum Technologies (grant agreement no. 731473) implemented within the European Union’s Horizon 2020 Programme. The authors also acknowledge the COST project Nanoscale Coherent Hybrid Devices for Superconducting Quantum Technologies–Action CA16218.

Author information

Authors and Affiliations

Authors

Contributions

N.B. conceived and directed the project. G.Si. and A.J. performed the measurements under the supervision of N.B. Samples were fabricated by G.H., M.S. and F.S. G.Si., A.J. and N.B. carried out analysis of the results and wrote the manuscript with the help of L.B. and J.L. G.Si.,G.Sa, G.H., S.C., M.G. and C.F.-P. contributed to discussions of the results and commented on the final manuscript.

Corresponding author

Correspondence to N. Bergeal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–2, Supplementary Figs. 1–7, Supplementary refs. 1–7

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Jouan, A., Herranz, G. et al. Gap suppression at a Lifshitz transition in a multi-condensate superconductor. Nat. Mater. 18, 948–954 (2019). https://doi.org/10.1038/s41563-019-0354-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0354-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing