Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultrahigh conductivity in Weyl semimetal NbAs nanobelts

Abstract

In two-dimensional (2D) systems, high mobility is typically achieved in low-carrier-density semiconductors and semimetals. Here, we discover that the nanobelts of Weyl semimetal NbAs maintain a high mobility even in the presence of a high sheet carrier density. We develop a growth scheme to synthesize single crystalline NbAs nanobelts with tunable Fermi levels. Owing to a large surface-to-bulk ratio, we argue that a 2D surface state gives rise to the high sheet carrier density, even though the bulk Fermi level is located near the Weyl nodes. A surface sheet conductance up to 5–100 S per □ is realized, exceeding that of conventional 2D electron gases, quasi-2D metal films, and topological insulator surface states. Corroborated by theory, we attribute the origin of the ultrahigh conductance to the disorder-tolerant Fermi arcs. The evidenced low-dissipation property of Fermi arcs has implications for both fundamental study and potential electronic applications.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Growth and characterization of NbAs nanobelts.
Fig. 2: Transport data for a series of NbAs nanobelts.
Fig. 3: Quantum oscillation analysis and the Fermi surface in NbAs nanobelts.
Fig. 4: A comparison of sheet conductance among various 2D systems and the illustration of scattering mechanisms.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Ando, T., Fowler, A. B. & Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).

    CAS  Article  Google Scholar 

  2. 2.

    Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011).

    Article  Google Scholar 

  3. 3.

    Beenakker, C. & van Houten, H. Quantum transport in semiconductor nanostructures. Solid State Phys. 44, 1–228 (1991).

    Article  Google Scholar 

  4. 4.

    Ye, J. T. et al. Liquid-gated interface superconductivity on an atomically flat film. Nat. Mater. 9, 125–128 (2009).

    Article  Google Scholar 

  5. 5.

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  Google Scholar 

  6. 6.

    Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  7. 7.

    Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  8. 8.

    Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    Zhang, C., Lu, H.-Z., Shen, S.-Q., Chen, Y. P. & Xiu, F. Towards the manipulation of topological states of matter: a perspective from electron transport. Sci. Bull. 63, 580–594 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    Li, Q. et al. Chiral magnetic effect in ZrTe5. Nat. Phys. 12, 550–554 (2016).

  13. 13.

    Zhang, C. et al. Room-temperature chiral charge pumping in Dirac semimetals. Nat. Commun. 8, 13741 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Zhang, C. L. et al. Signatures of the Adler-Bell-Jackiw chiral anomaly in a Weyl fermion semimetal. Nat. Commun. 7, 10735 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Moll, P. J. W. et al. Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2. Nature 535, 266–270 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Zhang, C. et al. Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd3As2. Nat. Commun. 8, 1272 (2017).

    Article  Google Scholar 

  17. 17.

    Liang, T. et al. Anomalous Hall effect in ZrTe5. Nat. Phys. 14, 451–455 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    Kurebayashi, D. & Nomura, K. Voltage-driven magnetization switching and spin pumping in Weyl semimetals. Phys. Rev. Appl. 6, 044013 (2016).

    Article  Google Scholar 

  19. 19.

    Jiang, Q.-D., Jiang, H., Liu, H., Sun, Q.-F. & Xie, X. C. Topological Imbert-Fedorov shift in Weyl semimetals. Phys. Rev. Lett. 115, 156602 (2015).

    Article  Google Scholar 

  20. 20.

    Gorbar, E. V., Miransky, V. A., Shovkovy, I. A. & Sukhachov, P. O. Origin of dissipative Fermi arc transport in Weyl semimetals. Phys. Rev. B 93, 235127 (2016).

    Article  Google Scholar 

  21. 21.

    Resta, G., Pi, S.-T., Wan, X. & Savrasov, S. Y. High surface conductivity of Fermi-arc electrons in Weyl semimetals. Phys. Rev. B 97, 085142 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    Bachmann, M. D. et al. Inducing superconductivity in Weyl semimetal microstructures by selective ion sputtering. Sci. Adv. 3, e1602983 (2017).

    Article  Google Scholar 

  23. 23.

    Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).

  24. 24.

    Matula, R. A. Electrical resistivity of copper, gold, palladium, and silver. J. Phys. Chem. Ref. Data 8, 1147–1298 (1979).

    CAS  Article  Google Scholar 

  25. 25.

    Xu, S.-Y. et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nat. Phys. 11, 748–754 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Zhang, C.-L. et al. Electron scattering in tantalum monoarsenide. Phys. Rev. B 95, 085202 (2017).

    Article  Google Scholar 

  27. 27.

    Ghimire, N. J. et al. Magnetotransport of single crystalline NbAs. J. Phys. Condens. Matter 27, 152201 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    Shekhar, C. et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nat. Phys. 11, 645–649 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Luo, Y. et al. Electron-hole compensation effect between topologically trivial electrons and nontrivial holes in NbAs. Phys. Rev. B 92, 205134 (2015).

    Article  Google Scholar 

  30. 30.

    Moll, P. J. W. et al. Magnetic torque anomaly in the quantum limit of Weyl semimetals. Nat. Commun. 7, 12492 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Xiu, F. et al. Manipulating surface states in topological insulator nanoribbons. Nat. Nanotechnol. 6, 216–221 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    Caviglia, A. D. et al. Two-dimensional quantum oscillations of the conductance at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 105, 236802 (2010).

    CAS  Article  Google Scholar 

  33. 33.

    Matsubara, Y. et al. Observation of the quantum Hall effect in δ-doped SrTiO3. Nat. Commun. 7, 11631 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Ziman, J. M. Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford Univ. Press, 1960).

  35. 35.

    Schumann, T. et al. Observation of the quantum Hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2. Phys. Rev. Lett. 120, 016801 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater. 14, 280–284 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    Du, X., Tsai, S.-W., Maslov, D. L. & Hebard, A. F. Metal-insulator-like behavior in semimetallic bismuth and graphite. Phys. Rev. Lett. 94, 166601 (2005).

    Article  Google Scholar 

  38. 38.

    Yang, F. Y. et al. Large magnetoresistance of electrodeposited single-crystal bismuth thin films. Science 284, 1335–1337 (1999).

    CAS  Article  Google Scholar 

  39. 39.

    Fatemi, V. et al. Magnetoresistance and quantum oscillations of an electrostatically tuned semimetal-to-metal transition in ultrathin WTe2. Phys. Rev. B 95, 041410 (2017).

    Article  Google Scholar 

  40. 40.

    Zhang, Y., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    CAS  Article  Google Scholar 

  41. 41.

    Xi, X., Berger, H., Forró, L., Shan, J. & Mak, K. F. Gate tuning of electronic phase transitions in two-dimensional NbSe2. Phys. Rev. Lett. 117, 106801 (2016).

    Article  Google Scholar 

  42. 42.

    Qu, D.-X., Hor, Y. S., Xiong, J., Cava, R. J. & Ong, N. P. Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2Te3. Science 329, 821–824 (2010).

  43. 43.

    Li, L. J. et al. Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 529, 185–189 (2015).

    Article  Google Scholar 

  44. 44.

    Kane, B. E., Pfeiffer, L. N., West, K. W. & Harnett, C. K. Variable density high mobility two‐dimensional electron and hole gases in a gated GaAs/AlxGa1−xAs heterostructure. Appl. Phys. Lett. 63, 2132–2134 (1993).

    CAS  Article  Google Scholar 

  45. 45.

    Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    CAS  Article  Google Scholar 

  46. 46.

    Joseph, F. & Masashi, K. A review of the quantum Hall effects in MgZnO/ZnO heterostructures. Rep. Prog. Phys. 81, 056501 (2018).

    Article  Google Scholar 

  47. 47.

    Lu, M. et al. Low-temperature electrical-transport properties of single-crystal bismuth films under pressure. Phys. Rev. B 53, 1609–1615 (1996).

    CAS  Article  Google Scholar 

  48. 48.

    Van den dries, L., Van Haesendonck, C., Bruynseraede, Y. & Deutscher, G. Two-dimensional localization in thin copper films. Phys. Rev. Lett. 46, 565–568 (1981).

    Article  Google Scholar 

  49. 49.

    Markiewicz, R. S. & Harris, L. A. Two-dimensional resistivity of ultrathin metal films. Phys. Rev. Lett. 46, 1149–1153 (1981).

    CAS  Article  Google Scholar 

  50. 50.

    Umansky, V. et al. MBE growth of ultra-low disorder 2DEG with mobility exceeding 35×106 cm2/Vs. J. Cryst. Growth 311, 1658–1661 (2009).

    CAS  Article  Google Scholar 

  51. 51.

    Blackman, C. et al. Chemical vapour deposition of group Vb metal phosphide thin films. J. Mater. Chem. 13, 1930–1935 (2003).

    CAS  Article  Google Scholar 

  52. 52.

    Arnold, F. et al. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP. Nat. Commun. 7, 11615 (2016).

    CAS  Article  Google Scholar 

  53. 53.

    Liang, S. et al. Experimental tests of the chiral anomaly magnetoresistance in the Dirac-Weyl semimetals Na3Bi and GdPtBi. Phys. Rev. X 8, 031002 (2018).

    CAS  Google Scholar 

  54. 54.

    Moll, P. J. W., Kushwaha, P., Nandi, N., Schmidt, B. & Mackenzie, A. P. Evidence for hydrodynamic electron flow in PdCoO2. Science 351, 1061–1064 (2016).

    CAS  Article  Google Scholar 

  55. 55.

    Mackenzie, A. P. The properties of ultrapure delafossite metals. Rep. Prog. Phys. 80, 032501 (2017).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

F.X. was supported by National Natural Science Foundation of China (grant nos. 61322407, 11474058, 61674040 and 11874116), National Key Research and Development Program of China (grant nos. 2017YFA0303302 and 2018YFA0305601) and the National Young 1000 Talent Plan. Part of the sample fabrication was performed at Fudan Nano-fabrication Laboratory. Part of the transport measurements was performed at the High Magnetic Field Laboratory, CAS. A portion of this work was performed at the National High Magnetic Field Laboratory (USA), which is supported by the National Science Foundation (NSF) cooperative agreement no. DMR-1644779, no. DMR-1157490 and the State of Florida. S.Y.S. was supported by NSF DMR (grant no. 1411336). Australian Research Council and Australian Microscopy and Microanalysis Research Facility are acknowledged for supporting the nano-characterization. A.N. acknowledges support from ETH Zurich. S.S. acknowledges support from Science Foundation Ireland (14/IA/2624 and 16/US-C2C/3287). Part of the computations were carried out at the Trinity Centre for High-Performance Computing. J.Z. was supported by Youth Innovation Promotion Association CAS (grant no. 2018486), the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (grant no. 2017FXCX001), and the Scientific Instrument Developing Project of the Chinese Academy of Sciences (grant no.YJKYYQ20180059). C.Z. and X.Y. were supported by China Scholarships Council (CSC) (grant nos. 201706100053 and 201706100054). F.X. acknowledges the tremendous help from Y. Chen for TEM characterization in Beijing University of Technology. C.Z. thanks Y. Ding for insightful discussions.

Author information

Affiliations

Authors

Contributions

F.X. conceived the ideas and supervised the overall research. Z.N. synthesized NbAs nanobelts with help from C.Z., T.G., H.Z. and X.Z. C.Z. and Z.N. fabricated the devices. C.Z., X.Y. and Y.L. carried out the transport measurements assisted by J.Z. and L.P. X.Y., Y.Z., Z.L., X.H. and J.Z. performed the sample characterization. C.Z. analysed the transport data. Y.D., X.W., A.N., S.S. and S.Y.S. provided the theoretical support. C.Z., S.Y.S. and F.X. wrote the paper with help from all other co-authors.

Corresponding author

Correspondence to Faxian Xiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–6, Supplementary Figures 1–8, Supplementary Table 1, Supplementary References 1–26

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Ni, Z., Zhang, J. et al. Ultrahigh conductivity in Weyl semimetal NbAs nanobelts. Nat. Mater. 18, 482–488 (2019). https://doi.org/10.1038/s41563-019-0320-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing