Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal


Broadband, efficient and fast conversion of light to electricity is crucial for sensing and clean energy. The bulk photovoltaic effect (BPVE) is a second-order nonlinear optical effect that intrinsically converts light into electrical current. Here, we demonstrate a large mid-infrared BPVE in microscopic devices of the Weyl semimetal TaAs. This discovery results from combining recent developments in Weyl semimetals, focused-ion beam fabrication and theoretical works suggesting a connection between BPVE and topology. We also present a detailed symmetry analysis that allows us to separate the shift current response from photothermal effects. The magnitude and wavelength range of the assigned shift current may impact optical detectors, clean energy and topology, and demonstrate the utility of Weyl semimetals for practical applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Symmetry and photocurrent generation.
Fig. 2: Polarization-dependent photocurrent.
Fig. 3: Reported glass coefficients.

Data availability

The data presented in this study may be available from the corresponding author upon request.


  1. 1.

    Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

    Article  Google Scholar 

  2. 2.

    Krishna, S. Quantum dots-in-a-well infrared photodetectors. J. Phys. D 38, 2142–2150 (2005).

    Article  Google Scholar 

  3. 3.

    Cook, A. M., M Fregoso, B., de Juan, F., Coh, S. & Moore, J. E. Design principles for shift current photovoltaics. Nat. Commun. 8, 14176 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Yang, M.-M., Kim, D. J. & Alexe, M. Flexo-photovoltaic effect. Science 360, 904–907 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    Tan, L. Z. et al. Shift current bulk photovoltaic effect in polar materials—hybrid and oxide perovskites and beyond. npj Comput. Mater. 2, 16026 (2016).

    Google Scholar 

  6. 6.

    Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e1501524 (2016).

    Article  Google Scholar 

  7. 7.

    Glazov, M. & Ganichev, S. High frequency electric field induced nonlinear effects in graphene. Phys. Rep. 535, 101–138 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Okada, K. N. et al. Enhanced photogalvanic current in topological insulators via Fermi energy tuning. Phys. Rev. B 93, 081403 (2016).

    Article  Google Scholar 

  9. 9.

    Pan, Y. et al. Helicity dependent photocurrent in electrically gated (Bi1−xSbx)2Te3 thin films. Nat. Commun. 8, 1037 (2017).

    Article  Google Scholar 

  10. 10.

    Dhara, S., Mele, E. J. & Agarwal, R. Voltage-tunable circular photogalvanic effect in silicon nanowires. Science 349, 726–729 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    CAS  Article  Google Scholar 

  12. 12.

    Gan, B. K., Yao, K., Lai, S. C., Chen, Y. F. & Goh, P. C. An ultraviolet (UV) detector using a ferroelectric thin film with in-plane polarization. IEEE Electron Device Lett. 29, 1215–1217 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    Zenkevich, A. et al. Giant bulk photovoltaic effect in thin ferroelectric BaTiO3 films. Phys. Rev. B 90, 161409 (2014).

    Article  Google Scholar 

  14. 14.

    Chynoweth, A. G. Surface space-charge layers in barium titanate. Phys. Rev. 102, 705–714 (1956).

    CAS  Article  Google Scholar 

  15. 15.

    Sipe, J. E. & Shkrebtii, A. I. Second-order optical response in semiconductors. Phys. Rev. B 61, 5337–5352 (2000).

    CAS  Article  Google Scholar 

  16. 16.

    Yang, X., Burch, K. & Ran, Y. Divergent bulk photovoltaic effect in Weyl semimetals. Preprint at (2017).

  17. 17.

    Chan, C.-K., Lindner, N. H., Refael, G. & Lee, P. A. Photocurrents in Weyl semimetals. Phys. Rev. B 95, 041104 (2017).

    Article  Google Scholar 

  18. 18.

    Golub, L. E., Ivchenko, E. L. & Spivak, B. Z. Photocurrent in gyrotropic Weyl semimetals. JETP Lett. 105, 782–785 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Xu, X., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

    CAS  Article  Google Scholar 

  21. 21.

    Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    Lv, B. et al. Observation of Weyl nodes in TaAs. Nat. Phys. 11, 724–727 (2015).

    Article  Google Scholar 

  23. 23.

    Yang, L. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Zhang, C.-L. et al. Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal. Nat. Commun. 7, 10735 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Zhang, Y. et al. Photogalvanic effect in Weyl semimetals from first principles. Phys. Rev. B 97, 241118 (2018).

    CAS  Article  Google Scholar 

  27. 27.

    Moll, P. J. Focused ion beam microstructuring of quantum matter. Annu. Rev. Condens. Matter Phys. 9, 147–162 (2018).

    Article  Google Scholar 

  28. 28.

    Liu, Z. K. et al. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. Nat. Mater. 15, 27–31 (2015).

    Google Scholar 

  29. 29.

    Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  30. 30.

    Wu, L. et al. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nat. Phys. 13, 350–355 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Xu, B. et al. Optical spectroscopy of the Weyl semimetal TaAs. Phys. Rev. B 93, 121110 (2016).

    Article  Google Scholar 

  32. 32.

    Kimura, S.-i et al. Optical signature of Weyl electronic structures in tantalum pnictides TaPn (Pn = P, As). Phys. Rev. B 96, 075119 (2017).

    Article  Google Scholar 

  33. 33.

    Ma, J. et al. Nonlinear photoresponse of type-II Weyl semimetals. Nat. Mater. (2019).

    Article  Google Scholar 

  34. 34.

    Glass, A. M., von der Linde, D. & Negran, T. J. High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl. Phys. Lett. 25, 233–235 (1974).

    CAS  Article  Google Scholar 

  35. 35.

    Sturman, B. & Fridkin, V. The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon and Breach, Philadelphia, 1992).

  36. 36.

    Fridkin, V. M., Kaminskii, A. A., Lazarev, V. G., Astaf’ev, S. B. & Butashin, A. V. Photorefractive effect in La3Ga5SiO14‐Pr3+ piezoelectric crystals. Appl. Phys. Lett. 55, 545–546 (1989).

    CAS  Article  Google Scholar 

  37. 37.

    Wang, F., Young, S. M., Zheng, F., Grinberg, I. & Rappe, A. M. Substantial bulk photovoltaic effect enhancement via nanolayering. Nat. Commun. 7, 10419 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    Young, S. M., Zheng, F. & Rappe, A. M. First-principles calculation of the bulk photovoltaic effect in bismuth ferrite. Phys. Rev. Lett. 109, 236601 (2012).

    Article  Google Scholar 

  39. 39.

    Brehm, J. A., Young, S. M., Zheng, F. & Rappe, A. M. First-principles calculation of the bulk photovoltaic effect in the polar compounds LiAsS2, LiAsSe2 and NaAsSe2. J. Chem. Phys. 141, 204704 (2014).

    Article  Google Scholar 

  40. 40.

    Zheng, F., Takenaka, H., Wang, F., Koocher, N. Z. & Rappe, A. M. First-principles calculation of the bulk photovoltaic effect in CH3NH3PbI3 and CH3NH3PbI3−xClx. J. Phys. Chem. Lett. 6, 31–37 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    Wang, F. & Rappe, A. M. First-principles calculation of the bulk photovoltaic effect in KNbO3 and (K,Ba)(Ni,Nb)O3−δ. Phys. Rev. B 91, 165124 (2015).

    Article  Google Scholar 

Download references


Photocurrent experiments performed by G.O. and work done by K.S.B. were supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under award no. DE-SC0018675. M.J.G. acknowledges support from the National Science Foundation, award no. DMR-1709987. L.K.D. was supported by a DAAD RISE fellowship. X.Y. and Y.R. acknowledge support from the National Science Foundation under grant no. DMR-1151440. Work at UCLA was supported by the US DOE, Office of Science, Office of Basic Energy Sciences under award no. DE-SC0011978. X.H. and P.J.W.M. were supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 715730).

Author information




K.S.B. and Y.R. conceived the study. G.B.O. and L.K.D. performed the primary measurements, analysed the data and provided the plots. M.J.G. performed the magneto-transport measurements. J.S., X.Y. and Y.R. performed the group theory analysis, local-density approximation and tight binding calculations. G.B.O. and K.S.B. wrote the manuscript with input from all co-authors. B.S. and N.N. prepared the bulk crystals and P.J.W.M. and X.H. created the devices.

Corresponding author

Correspondence to Kenneth S. Burch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–8, Supplementary Notes 1–8, Supplementary Table 1, Supplementary References 1–27

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Osterhoudt, G.B., Diebel, L.K., Gray, M.J. et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 18, 471–475 (2019).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing