Abstract

Broadband, efficient and fast conversion of light to electricity is crucial for sensing and clean energy. The bulk photovoltaic effect (BPVE) is a second-order nonlinear optical effect that intrinsically converts light into electrical current. Here, we demonstrate a large mid-infrared BPVE in microscopic devices of the Weyl semimetal TaAs. This discovery results from combining recent developments in Weyl semimetals, focused-ion beam fabrication and theoretical works suggesting a connection between BPVE and topology. We also present a detailed symmetry analysis that allows us to separate the shift current response from photothermal effects. The magnitude and wavelength range of the assigned shift current may impact optical detectors, clean energy and topology, and demonstrate the utility of Weyl semimetals for practical applications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data presented in this study may be available from the corresponding author upon request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

  2. 2.

    Krishna, S. Quantum dots-in-a-well infrared photodetectors. J. Phys. D 38, 2142–2150 (2005).

  3. 3.

    Cook, A. M., M Fregoso, B., de Juan, F., Coh, S. & Moore, J. E. Design principles for shift current photovoltaics. Nat. Commun. 8, 14176 (2017).

  4. 4.

    Yang, M.-M., Kim, D. J. & Alexe, M. Flexo-photovoltaic effect. Science 360, 904–907 (2018).

  5. 5.

    Tan, L. Z. et al. Shift current bulk photovoltaic effect in polar materials—hybrid and oxide perovskites and beyond. npj Comput. Mater. 2, 16026 (2016).

  6. 6.

    Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e1501524 (2016).

  7. 7.

    Glazov, M. & Ganichev, S. High frequency electric field induced nonlinear effects in graphene. Phys. Rep. 535, 101–138 (2014).

  8. 8.

    Okada, K. N. et al. Enhanced photogalvanic current in topological insulators via Fermi energy tuning. Phys. Rev. B 93, 081403 (2016).

  9. 9.

    Pan, Y. et al. Helicity dependent photocurrent in electrically gated (Bi1−xSbx)2Te3 thin films. Nat. Commun. 8, 1037 (2017).

  10. 10.

    Dhara, S., Mele, E. J. & Agarwal, R. Voltage-tunable circular photogalvanic effect in silicon nanowires. Science 349, 726–729 (2015).

  11. 11.

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

  12. 12.

    Gan, B. K., Yao, K., Lai, S. C., Chen, Y. F. & Goh, P. C. An ultraviolet (UV) detector using a ferroelectric thin film with in-plane polarization. IEEE Electron Device Lett. 29, 1215–1217 (2008).

  13. 13.

    Zenkevich, A. et al. Giant bulk photovoltaic effect in thin ferroelectric BaTiO3 films. Phys. Rev. B 90, 161409 (2014).

  14. 14.

    Chynoweth, A. G. Surface space-charge layers in barium titanate. Phys. Rev. 102, 705–714 (1956).

  15. 15.

    Sipe, J. E. & Shkrebtii, A. I. Second-order optical response in semiconductors. Phys. Rev. B 61, 5337–5352 (2000).

  16. 16.

    Yang, X., Burch, K. & Ran, Y. Divergent bulk photovoltaic effect in Weyl semimetals. Preprint at https://arxiv.org/abs/1712.09363 (2017).

  17. 17.

    Chan, C.-K., Lindner, N. H., Refael, G. & Lee, P. A. Photocurrents in Weyl semimetals. Phys. Rev. B 95, 041104 (2017).

  18. 18.

    Golub, L. E., Ivchenko, E. L. & Spivak, B. Z. Photocurrent in gyrotropic Weyl semimetals. JETP Lett. 105, 782–785 (2017).

  19. 19.

    Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017).

  20. 20.

    Xu, X., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

  21. 21.

    Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

  22. 22.

    Lv, B. et al. Observation of Weyl nodes in TaAs. Nat. Phys. 11, 724–727 (2015).

  23. 23.

    Yang, L. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

  24. 24.

    Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

  25. 25.

    Zhang, C.-L. et al. Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal. Nat. Commun. 7, 10735 (2016).

  26. 26.

    Zhang, Y. et al. Photogalvanic effect in Weyl semimetals from first principles. Phys. Rev. B 97, 241118 (2018).

  27. 27.

    Moll, P. J. Focused ion beam microstructuring of quantum matter. Annu. Rev. Condens. Matter Phys. 9, 147–162 (2018).

  28. 28.

    Liu, Z. K. et al. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. Nat. Mater. 15, 27–31 (2015).

  29. 29.

    Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

  30. 30.

    Wu, L. et al. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nat. Phys. 13, 350–355 (2017).

  31. 31.

    Xu, B. et al. Optical spectroscopy of the Weyl semimetal TaAs. Phys. Rev. B 93, 121110 (2016).

  32. 32.

    Kimura, S.-i et al. Optical signature of Weyl electronic structures in tantalum pnictides TaPn (Pn = P, As). Phys. Rev. B 96, 075119 (2017).

  33. 33.

    Ma, J. et al. Nonlinear photoresponse of type-II Weyl semimetals. Nat. Mater. https://doi.org/10.1038/s41563-019-0296-5 (2019).

  34. 34.

    Glass, A. M., von der Linde, D. & Negran, T. J. High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl. Phys. Lett. 25, 233–235 (1974).

  35. 35.

    Sturman, B. & Fridkin, V. The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon and Breach, Philadelphia, 1992).

  36. 36.

    Fridkin, V. M., Kaminskii, A. A., Lazarev, V. G., Astaf’ev, S. B. & Butashin, A. V. Photorefractive effect in La3Ga5SiO14‐Pr3+ piezoelectric crystals. Appl. Phys. Lett. 55, 545–546 (1989).

  37. 37.

    Wang, F., Young, S. M., Zheng, F., Grinberg, I. & Rappe, A. M. Substantial bulk photovoltaic effect enhancement via nanolayering. Nat. Commun. 7, 10419 (2016).

  38. 38.

    Young, S. M., Zheng, F. & Rappe, A. M. First-principles calculation of the bulk photovoltaic effect in bismuth ferrite. Phys. Rev. Lett. 109, 236601 (2012).

  39. 39.

    Brehm, J. A., Young, S. M., Zheng, F. & Rappe, A. M. First-principles calculation of the bulk photovoltaic effect in the polar compounds LiAsS2, LiAsSe2 and NaAsSe2. J. Chem. Phys. 141, 204704 (2014).

  40. 40.

    Zheng, F., Takenaka, H., Wang, F., Koocher, N. Z. & Rappe, A. M. First-principles calculation of the bulk photovoltaic effect in CH3NH3PbI3 and CH3NH3PbI3−xClx. J. Phys. Chem. Lett. 6, 31–37 (2015).

  41. 41.

    Wang, F. & Rappe, A. M. First-principles calculation of the bulk photovoltaic effect in KNbO3 and (K,Ba)(Ni,Nb)O3−δ. Phys. Rev. B 91, 165124 (2015).

Download references

Acknowledgements

Photocurrent experiments performed by G.O. and work done by K.S.B. were supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under award no. DE-SC0018675. M.J.G. acknowledges support from the National Science Foundation, award no. DMR-1709987. L.K.D. was supported by a DAAD RISE fellowship. X.Y. and Y.R. acknowledge support from the National Science Foundation under grant no. DMR-1151440. Work at UCLA was supported by the US DOE, Office of Science, Office of Basic Energy Sciences under award no. DE-SC0011978. X.H. and P.J.W.M. were supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 715730).

Author information

Affiliations

  1. Department of Physics, Boston College, Chestnut Hill, MA, USA

    • Gavin B. Osterhoudt
    • , Laura K. Diebel
    • , Mason J. Gray
    • , Xu Yang
    • , John Stanco
    • , Ying Ran
    •  & Kenneth S. Burch
  2. Max-Planck-Institute for Chemical Physics of Solids, Dresden, Germany

    • Xiangwei Huang
    •  & Philip J. W. Moll
  3. Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA, USA

    • Bing Shen
    •  & Ni Ni
  4. EPFL, IMX, Lausanne, Switzerland

    • Philip J. W. Moll

Authors

  1. Search for Gavin B. Osterhoudt in:

  2. Search for Laura K. Diebel in:

  3. Search for Mason J. Gray in:

  4. Search for Xu Yang in:

  5. Search for John Stanco in:

  6. Search for Xiangwei Huang in:

  7. Search for Bing Shen in:

  8. Search for Ni Ni in:

  9. Search for Philip J. W. Moll in:

  10. Search for Ying Ran in:

  11. Search for Kenneth S. Burch in:

Contributions

K.S.B. and Y.R. conceived the study. G.B.O. and L.K.D. performed the primary measurements, analysed the data and provided the plots. M.J.G. performed the magneto-transport measurements. J.S., X.Y. and Y.R. performed the group theory analysis, local-density approximation and tight binding calculations. G.B.O. and K.S.B. wrote the manuscript with input from all co-authors. B.S. and N.N. prepared the bulk crystals and P.J.W.M. and X.H. created the devices.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Kenneth S. Burch.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–8, Supplementary Notes 1–8, Supplementary Table 1, Supplementary References 1–27

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41563-019-0297-4

Further reading