Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A high-rate and long-life organic–oxygen battery


Alkali metal–oxygen batteries promise high gravimetric energy densities but suffer from low rate capability, poor cycle life and safety hazards associated with metal anodes. Here we describe a safe, high-rate and long-life oxygen battery that exploits a potassium biphenyl complex anode and a dimethylsulfoxide-mediated potassium superoxide cathode. The proposed potassium biphenyl complex–oxygen battery exhibits an unprecedented cycle life (3,000 cycles) with a superior average coulombic efficiency of more than 99.84% at a high current density of 4.0 mA cm−2. We further reduce the redox potential of biphenyl by adding the electron-donating methyl group to the benzene ring, which successfully achieved a redox potential of 0.14 V versus K/K+. This demonstrates the direction and opportunities to further improve the cell voltage and energy density of the alkali-metal organic–oxygen batteries.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Electrochemical characterization of the representative aromatic hydrocarbons and schematics of the organic–oxygen battery.
Fig. 2: Performance comparison between the K metal anode and the BpK anode in both O2 full-cell and symmetric-cell configurations.
Fig. 3: Rate capability and cycle life of the BpK–O2 cell.
Fig. 4: Analysis of the CE evolution of the BpK–O2 cell at early cycling stage.
Fig. 5: Characterization of discharge product.
Fig. 6: Effect of methylation on the redox potentials of the Bp molecule.

Data availability

Data supporting the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Grey, C. & Tarascon, J. Sustainability and in situ monitoring in battery development. Nat. Mater. 16, 45–56 (2017).

    Article  Google Scholar 

  2. 2.

    Aurbach, D., McCloskey, B. D., Nazar, L. F. & Bruce, P. G. Advances in understanding mechanisms underpinning lithium–air batteries. Nat. Energy 1, 16128 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Lu, Y.-C. et al. Lithium–oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ. Sci. 6, 750–768 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    Ren, X. & Wu, Y. A low-overpotential potassium–oxygen battery based on potassium superoxide. J. Am. Chem. Soc. 135, 2923–2926 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    Chen, Y., Freunberger, S. A., Peng, Z., Fontaine, O. & Bruce, P. G. Charging a Li–O2 battery using a redox mediator. Nat. Chem. 5, 489–494 (2013).

    Article  Google Scholar 

  6. 6.

    Gao, X., Chen, Y., Johnson, L. R., Jovanov, Z. P. & Bruce, P. G. A rechargeable lithium–oxygen battery with dual mediators stabilizing the carbon cathode. Nat. Energy 2, 17118 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Mahne, N. et al. Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries. Nat. Energy 2, 17036 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    Wandt, J., Jakes, P., Granwehr, J., Gasteiger, H. A. & Eichel, R. A. Singlet oxygen formation during the charging process of an aprotic lithium–oxygen battery. Angew. Chem. Int. Ed. 55, 6892–6895 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    McCloskey, B. D., Scheffler, R., Speidel, A., Girishkumar, G. & Luntz, A. C. On the mechanism of nonaqueous Li–O2 electrochemistry on C and its kinetic overpotentials: some implications for Li–air batteries. J. Phys. Chem. C 116, 23897–23905 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Lu, Y.-C., Gasteiger, H. A., Parent, M. C., Chiloyan, V. & Shao-Horn, Y. The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries. Electrochem. Solid-State Lett. 13, A69–A72 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    Lu, Y.-C. et al. Platinum–gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium–air batteries. J. Am. Chem. Soc. 132, 12170–12171 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    Wang, Y., Liang, Z., Zou, Q., Cong, G. & Lu, Y.-C. Mechanistic insights into catalyst-assisted nonaqueous oxygen evolution reaction in lithium–oxygen batteries. J. Phys. Chem. C 120, 6459–6466 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Lu, Y.-C. et al. The discharge rate capability of rechargeable Li–O2 batteries. Energy Environ. Sci. 4, 2999–3007 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    Lu, Y.-C., Gasteiger, H. A. & Shao-Horn, Y. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li–air batteries. J. Am. Chem. Soc. 133, 19048–19051 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    Gao, X., Chen, Y., Johnson, L. & Bruce, P. G. Promoting solution phase discharge in Li–O2 batteries containing weakly solvating electrolyte solutions. Nat. Mater. 15, 882–888 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Liang, Z. & Lu, Y.-C. Critical role of redox mediator in suppressing charging instabilities of lithium–oxygen batteries. J. Am. Chem. Soc. 138, 7574–7583 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Lu, J. et al. A lithium–oxygen battery based on lithium superoxide. Nature 529, 377–382 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Khan, A. U. & Mahanti, S. Collective electron effects of O2 in potassium superoxide. J. Chem. Phys. 63, 2271–2278 (1975).

    CAS  Article  Google Scholar 

  20. 20.

    Lee, B. et al. First-principles study of the reaction mechanism in sodium–oxygen batteries. Chem. Mater. 26, 1048–1055 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Hartmann, P. et al. A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat. Mater. 12, 228–232 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    Hu, Y. et al. Porous perovskite calcium–manganese oxide microspheres as an efficient catalyst for rechargeable sodium–oxygen batteries. J. Mater. Chem. A 3, 3320–3324 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Li, Y. et al. Superior catalytic activity of nitrogen-doped graphene cathodes for high energy capacity sodium–air batteries. Chem. Commun. 49, 11731–11733 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    Kim, J., Lim, H.-D., Gwon, H. & Kang, K. Sodium–oxygen batteries with alkyl-carbonate and ether based electrolytes. Phys. Chem. Chem. Phys. 15, 3623–3629 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    Yadegari, H. et al. On rechargeability and reaction kinetics of sodium–air batteries. Energy Environ. Sci. 7, 3747–3757 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    Kim, J. et al. Dissolution and ionization of sodium superoxide in sodium–oxygen batteries. Nat. Commun. 7, 10670 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Kang, S., Mo, Y., Ong, S. P. & Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na–O2 batteries. Nano. Lett. 14, 1016–1020 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Black, R. et al. The nature and impact of side reactions in glyme-based sodium–oxygen batteries. ChemSusChem 9, 1795–1803 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    Ren, X. et al. Understanding side reactions in K–O2 batteries for improved cycle life. ACS Appl. Mater. Interfaces 6, 19299–19307 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    Xiao, N., Rooney, R. T., Gewirth, A. A. & Wu, Y. Long-term stability of KO2 in K–O2 batteries. Angew. Chem. Int. Ed. 57, 1227–1231 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Wang, W., Lai, N.-C., Liang, Z., Wang, Y. & Lu, Y.-C. Superoxide stabilization and a universal KO2 growth mechanism in potassium–oxygen batteries. Angew. Chem. Int. Ed. 57, 5042–5046 (2018).

    CAS  Article  Google Scholar 

  32. 32.

    Xia, C., Black, R., Fernandes, R., Adams, B. & Nazar, L. F. The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nat. Chem. 7, 496–501 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Sun, Y., Liu, N. & Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 1, 16071 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Mason, P. E. et al. Coulomb explosion during the early stages of the reaction of alkali metals with water. Nat. Chem. 7, 250–254 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    Holy, N. Reactions of the radical anions and dianions of aromatic hydrocarbons. Chem. Rev. 74, 243–277 (1974).

    CAS  Article  Google Scholar 

  36. 36.

    Connelly, N. G. & Geiger, W. E. Chemical redox agents for organometallic chemistry. Chem. Rev. 96, 877–910 (1996).

    CAS  Article  Google Scholar 

  37. 37.

    Yu, J. et al. A class of liquid anode for rechargeable batteries with ultralong cycle life. Nat. Commun. 8, 14629 (2017).

    Article  Google Scholar 

  38. 38.

    Liang, F. et al. A liquid anode for rechargeable sodium–air batteries with low voltage gap and high safety. Nano Energy 49, 574–579 (2018).

    CAS  Article  Google Scholar 

  39. 39.

    Gong, K., Fang, Q., Gu, S., Li, S. F. Y. & Yan, Y. Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs. Energy Environ. Sci. 8, 3515–3530 (2015).

    Article  Google Scholar 

  40. 40.

    Ishizu, K., Ohnishi, M. & Shikata, H. ENDOR studies of alkylated biphenyl anion radicals in solution. Relation between molecular size and optimum temperature of ENDOR enhancement. Bull. Chem. Soc. Jpn 50, 76–78 (1977).

    CAS  Article  Google Scholar 

  41. 41.

    Fenton, H. J. H. LXXIII.—Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans. 65, 899–910 (1894).

    CAS  Article  Google Scholar 

  42. 42.

    Ottakam Thotiyl, M. M., Freunberger, S. A., Peng, Z. & Bruce, P. G. The carbon electrode in nonaqueous Li–O2 cells. J. Am. Chem. Soc. 135, 494–500 (2012).

    Article  Google Scholar 

  43. 43.

    Metzger, M., Marino, C., Sicklinger, J., Haering, D. & Gasteiger, H. A. Anodic oxidation of conductive carbon and ethylene carbonate in high-voltage Li-ion batteries quantified by on-line electrochemical mass spectrometry. J. Electrochem. Soc. 162, A1123–A1134 (2015).

    CAS  Article  Google Scholar 

  44. 44.

    Dilimon, V. et al. Superoxide stability for reversible Na–O2 electrochemistry. Sci. Rep. 7, 17635 (2017).

    CAS  Article  Google Scholar 

  45. 45.

    Yang, F., Wang, D., Zhao, Y., Tsui, K.-L. & Bae, S. J. A study of the relationship between coulombic efficiency and capacity degradation of commercial lithium-ion batteries. Energy 145, 486–495 (2018).

    Article  Google Scholar 

  46. 46.

    Gyenes, B., Stevens, D., Chevrier, V. & Dahn, J. Understanding anomalous behavior in coulombic efficiency measurements on Li-ion batteries. J. Electrochem. Soc. 162, A278–A283 (2015).

    CAS  Article  Google Scholar 

  47. 47.

    Schwenke, K. U., Meini, S., Wu, X., Gasteiger, H. A. & Piana, M. Stability of superoxide radicals in glyme solvents for non-aqueous Li–O2 battery electrolytes. Phys. Chem. Chem. Phys. 15, 11830–11839 (2013).

    CAS  Article  Google Scholar 

  48. 48.

    Pratt, K. W., Koch, W., Wu, Y. C. & Berezansky, P. Molality-based primary standards of electrolytic conductivity (IUPAC Technical Report). Pure Appl. Chem. 73, 1783–1793 (2001).

    CAS  Article  Google Scholar 

  49. 49.

    Geng, C. et al. Conductivity and applications of Li-biphenyl-1,2-dimethoxyethane solution for lithium ion batteries. Chin. Phys. B 26, 078201 (2017).

    Article  Google Scholar 

  50. 50.

    Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    CAS  Article  Google Scholar 

  51. 51.

    Stephens, P., Devlin, F., Chabalowski, C. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).

    CAS  Article  Google Scholar 

  52. 52.

    Gaussian 16 Rev. B.01 (Gaussian, Wallingford, 2016).

  53. 53.

    Petersson, G. A. et al. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys. 89, 2193–2218 (1988).

    CAS  Article  Google Scholar 

  54. 54.

    Petersson, G. A. & Al-Laham, M. A. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 94, 6081–6090 (1991).

    CAS  Article  Google Scholar 

Download references


The work described in this paper was supported by the Research Grant Council of the Hong Kong Administrative Region, China, under the Theme-based Research Scheme through Project T23-60I/17-R and General Research Fund CUHK 14207517. The authors are grateful to Y. Wang for assisting with the OEMS measurements.

Author information




G.C. and Y.-C.L. conceived the project, analysed the data and wrote the manuscript. G.C. performed the density functional theory calculation and conducted the experiments with contributions from W.W. (cell and electrolyte design), N.-C.L. (BpK titration and SEM/EDX measurements) and Z.L. (OEMS and Fenton’s reagent tests).

Corresponding author

Correspondence to Yi-Chun Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–20, Supplementary Tables 1–2, Supplementary Notes 1–4, Supplementary Video Captions 1–2, Supplementary References 1–25

Supplementary Video 1

Reaction of K metal and BpK with bulk water.

Supplementary Video 2

Reaction of K metal and BpK with bulk DMSO.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cong, G., Wang, W., Lai, NC. et al. A high-rate and long-life organic–oxygen battery. Nat. Mater. 18, 390–396 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing