Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Towards polariton blockade of confined exciton–polaritons

Abstract

Cavity–polaritons in semiconductor microstructures have emerged as a promising system for exploring non-equilibrium dynamics of many-body systems1. Key advances in this field, including the observation of polariton condensation2, superfluidity3, realization of topological photonic bands4, and dissipative phase transitions5,6,7, generically allow for a description based on a mean-field Gross–Pitaevskii formalism. Observation of polariton intensity squeezing8,9 and decoherence of a polarization entangled photon pair by a polariton condensate10, on the other hand, demonstrate quantum effects that show up at high polariton occupancy. Going beyond and into the regime of strongly correlated polaritons requires the observation of a photon blockade effect11,12 where interactions are strong enough to suppress double occupancy of a photonic lattice site. Here, we report evidence of quantum correlations between polaritons spatially confined in a fibre cavity. Photon correlation measurements show that careful tuning of the coupled system can lead to a modest reduction of simultaneous two-polariton generation probability by 5%. Concurrently, our experiments allow us to measure the polariton interaction strength, thereby resolving the controversy stemming from recent experimental reports13. Our findings constitute an essential step towards the realization of strongly interacting photonic systems.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental set-up for cavity–polaritons.
Fig. 2: Optimization of polariton parameters.
Fig. 3: Quantum correlations between polaritons.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  Google Scholar 

  2. 2.

    Kasprzak et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–808 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    St-Jean, P., Goblot, V., Galopin, E. & Lemaitre., A. Lasing in topological edge states of a one-dimensional lattice. Nat. Photon. 11, 651–656 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    Ohadi, H. et al. Spin order and phase transitions in chains of polariton condensates. Phys. Rev. Lett. 119, 067401 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Rodriguez, S. R. K. et al. Probing a dissipative phase transition via dynamical optical hysteresis. Phys. Rev. Lett. 118, 247402 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Fink, T., Schade, A., Höfling, S., Schneider, C. & Imamoğlu, A. Signatures of a dissipative phase transition in photon correlation measurements. Nat. Phys. 14, 365–369 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    Karr, J. Ph, Baas, A., Houdre, R. & Giacobino, E. Squeezing in semiconductor microcavities in the strong coupling regime. Phys. Rev. A 69, 031802(R) (2004).

    Article  Google Scholar 

  9. 9.

    Boulier, T. et al. Polariton-generated intensity squeezing in semiconductor micropillars. Nat. Commun. 5, 3260 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Cuevas, A. et al. First observation of the quantized exciton–polariton field and effect of interactions on a single polariton. Sci. Adv. 4, eaao6814 (2018).

    Article  Google Scholar 

  11. 11.

    Imamoğlu, A., Schmidt, H., Woods, G. & Deutsch, M. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467–1470 (1997).

    Article  Google Scholar 

  12. 12.

    Verger, A., Ciuti, C. & Carusotto, I. Polariton quantum blockade in a photonic dot. Phys. Rev. B 73, 193306 (2006).

    Article  Google Scholar 

  13. 13.

    Sun, Y. et al. Direct measurement of polariton–polariton interaction strength. Nat. Phys. 13, 870–875 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    CAS  Article  Google Scholar 

  15. 15.

    Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 4, 859–863 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    Lang, C. et al. Observation of resonant photon blockade at microwave frequencies using correlation function measurements. Phys. Rev. Lett. 106, 243601 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    Reinhart, A. et al. Strongly correlated photons on a chip. Nat. Photon. 6, 93–96 (2012).

    Article  Google Scholar 

  18. 18.

    Cubel Liebisch, T., Reinhard, A., Berman, P. R. & Raithel, G. Atom counting statistics in ensembles of interacting rydberg atoms. Phys. Rev. Lett. 95, 253002 (2005).

    Article  Google Scholar 

  19. 19.

    Urban, E. et al. Observation of Rydberg blockade between two atoms. Nat. Phys. 5, 110–114 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    Ferretti et al. Single-photon nonlinear optics with Kerr-type nanostructured materials. Phys. Rev. B 85, 033303 (2012).

    Article  Google Scholar 

  21. 21.

    Besga, B. et al. Polariton boxes in a tunable fiber cavity. Phys. Rev. Appl. 3, 014008 (2015).

    Article  Google Scholar 

  22. 22.

    Diniz, I. et al. Strongly coupling a cavity to inhomogeneous ensembles of emitters: potential for long-lived solid-state quantum memories. Phys. Rev. A 84, 063810 (2011).

    Article  Google Scholar 

  23. 23.

    Houdré, R., Stanley, R. P. & Ilegems, M. Vacuum-field Rabi splitting in the presence of inhomogeneous broadening: resolution of a homogeneous linewidth in an inhomogeneously broadened system. Phys. Rev. A 53, 2711–2715 (1996).

    Article  Google Scholar 

  24. 24.

    Muñoz-Matutano, G. et al. Emergence of quantum correlations from interacting fibre-cavity polaritons. Nat. Mater. https://doi.org/10.1038/s41563-019-0281-z (2019).

  25. 25.

    Ferrier, L. et al. Interactions in confined polariton condensates. Phys. Rev. Lett. 106, 126401 (2011).

    Article  Google Scholar 

  26. 26.

    Rodriguez, S. R. K. et al. Interaction-induced hopping phase in driven-dissipative coupled photonic micro-cavities. Nat. Commun. 7, 11887 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Togan, E., Lim, H.T., Faelt, S., Wegscheider, W. & Imamoğlu, A. Strong interactions between dipolar polaritons. Phys. Rev. Lett. 121, 227402 (2018).

    Article  Google Scholar 

  28. 28.

    Rosenberg, I. et al. Strongly interacting dipolar-polaritons. Sci. Adv. 4, eaat8880 (2018).

    Article  Google Scholar 

  29. 29.

    Ravets, S. et al. Polaron polaritons in the integer and fractional quantum Hall regimes. Phys. Rev. Lett. 120, 057401 (2018).

    Article  Google Scholar 

  30. 30.

    Boulier, T. et al. Polariton-generated intensity squeezing in semiconductor micropillars. Nat. Commun. 5, 3260 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation (SNSF) through a DACH project 200021E-158569-1, SNSF National Centre of Competence in Research – Quantum Science and Technology (NCCR QSIT) and an ERC Advanced investigator grant (POLTDES). The Würzburg Group acknowledges support by the state of Bavaria, and the DFG within project SCHN1376-3.1.

Author information

Affiliations

Authors

Contributions

A.D., T.F. and A.I. supervised the project. T.F. designed the experiment. A.D. and T.F. carried out the measurements. A.S., C.S., and S.H. grew the sample. A.D. and A.I. wrote the manuscript.

Corresponding author

Correspondence to Ataç İmamoğlu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–4, Supplementary Figures 1–4, Supplementary References 1–5

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Delteil, A., Fink, T., Schade, A. et al. Towards polariton blockade of confined exciton–polaritons. Nature Mater 18, 219–222 (2019). https://doi.org/10.1038/s41563-019-0282-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing