Quantum interference can profoundly affect charge transport in single molecules, but experiments can usually measure only the conductance at the Fermi energy. Because, in general, the most pronounced features of the quantum interference are not located at the Fermi energy, it is highly desirable to probe charge transport in a broader energy range. Here, by means of electrochemical gating, we measure the conductance and map the transmission functions of single molecules at and around the Fermi energy, and study signatures associated with constructive and destructive interference. With electrochemical gate control, we tune the quantum interference between the highest occupied molecular orbital and lowest unoccupied molecular orbital, and directly observe anti-resonance, a distinct feature of destructive interference. By tuning the molecule in and out of anti-resonance, we achieve continuous control of the conductance over two orders of magnitude with a subthreshold swing of ~17 mV dec−1, features relevant to high-speed and low-power electronics.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Code availability

The DFT code CONQUEST is available at http://www.order-n.org and the corresponding module used to calculate the quantum transport properties is available from M.B. upon reasonable request.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Solomon, G. C. et al. Understanding quantum interference in coherent molecular conduction. J. Chem. Phys. 129, 054701 (2008).

  2. 2.

    Aradhya, S. V. & Venkataraman, L. Single-molecule junctions beyond electronic transport. Nat. Nanotech. 8, 399–410 (2013).

  3. 3.

    Darwish, N. et al. Observation of electrochemically controlled quantum interference in a single anthraquinone-based norbornylogous bridge molecule. Angew. Chem. Int. Ed. 51, 3203–3206 (2012).

  4. 4.

    Lambert, C. J., Sadeghi, H. & Al-Galiby, Q. H. Quantum-interference-enhanced thermoelectricity in single molecules and molecular films. C. R. Phys. 17, 1084–1095 (2016).

  5. 5.

    Yoshizawa, K., Tada, T. & Staykov, A. Orbital views of the electron transport in molecular devices. J. Am. Chem. Soc. 130, 9406–9413 (2008).

  6. 6.

    Tada, T. & Yoshizawa, K. Molecular design of electron transport with orbital rule: toward conductance-decay free molecular junctions. Phys. Chem. Chem. Phys. 17, 32099–32110 (2015).

  7. 7.

    Yoshizawa, K. An orbital rule for electron transport in molecules. Acc. Chem. Res. 45, 1612–1621 (2012).

  8. 8.

    Markussen, T., Stadler, R. & Thygesen, K. S. The relation between structure and quantum interference in single molecule junctions. Nano Lett. 10, 4260–4265 (2010).

  9. 9.

    Cardamone, D. M., Stafford, C. A. & Mazumdar, S. Controlling quantum transport through a single molecule. Nano Lett. 6, 2422–2426 (2006).

  10. 10.

    Manrique, D. Z. et al. A quantum circuit rule for interference effects in single-molecule electrical junctions. Nat. Commun. 6, 6389 (2015).

  11. 11.

    Bürkle, M. et al. The orbital selection rule for molecular conductance as manifested in tetraphenyl-based molecular junctions. J. Am. Chem. Soc. 139, 2989–2993 (2017).

  12. 12.

    Koole, M., Thijssen, J. M., Valkenier, H., Hummelen, J. C. & Zant, H. S. Jvd Electric-field control of interfering transport pathways in a single-molecule anthraquinone transistor. Nano Lett. 15, 5569–5573 (2015).

  13. 13.

    Aradhya, S. V. et al. Dissecting contact mechanics from quantum interference in single-molecule junctions of stilbene derivatives. Nano Lett. 12, 1643–1647 (2012).

  14. 14.

    Guedon, C. M. et al. Observation of quantum interference in molecular charge transport. Nat. Nanotech. 7, 305–309 (2012).

  15. 15.

    Baghernejad, M. et al. Electrochemical control of single-molecule conductance by Fermi-level tuning and conjugation switching. J. Am. Chem. Soc. 136, 17922–17925 (2014).

  16. 16.

    Baer, R. & Neuhauser, D. Phase coherent electronics: a molecular switch based on quantum interference. J. Am. Chem. Soc. 124, 4200–4201 (2002).

  17. 17.

    Liu, X. et al. Gating of quantum interference in molecular junctions by heteroatom substitution. Angew. Chem. Int. Ed. 56, 173–176 (2017).

  18. 18.

    Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221 (2003).

  19. 19.

    Capozzi, B. et al. Mapping the transmission functions of single-molecule junctions. Nano Lett. 16, 3949–3954 (2016).

  20. 20.

    Mayor, M. et al. Electric current through a molecular rod—relevance of the position of the anchor groups. Angew. Chem. Int. Ed. 42, 5834–5838 (2003).

  21. 21.

    Taniguchi, M. et al. Dependence of single-molecule conductance on molecule junction symmetry. J. Am. Chem. Soc. 133, 11426–11429 (2011).

  22. 22.

    Lovey, D. A. & Romero, R. H. Quantum interference through gated single-molecule junctions. Chem. Phys. Lett. 530, 86–92 (2012).

  23. 23.

    Li, Y., Mol, J. A., Benjamin, S. C. & Briggs, G. A. D. Interference-based molecular transistors. Sci. Rep. 6, 33686 (2016).

  24. 24.

    Guenther, J. et al. Activation of aryl halides at gold(i): practical synthesis of (P,C) cyclometalated gold(iii) complexes. J. Am. Chem. Soc. 136, 1778–1781 (2014).

  25. 25.

    Liu, H.-T. et al. The mixed cyanide halide Au(i) complexes, [XAuCN] (X = F, Cl, Br, and I): evolution from ionic to covalent bonding. Chem. Sci. 2, 2101–2108 (2011).

  26. 26.

    Bessonov, A. A. et al. Vibrational interactions in dimethylgold(iii) halides and carboxylates. Vib. Spectrosc. 51, 283–288 (2009).

  27. 27.

    Xiang, L. et al. Non-exponential length dependence of conductance in iodide-terminated oligothiophene single-molecule tunneling junctions. J. Am. Chem. Soc. 138, 679–687 (2016).

  28. 28.

    Li, Y., Xiang, L., Palma, J. L., Asai, Y. & Tao, N. Thermoelectric effect and its dependence on molecular length and sequence in single DNA molecules. Nat. Commun. 7, 11294 (2016).

  29. 29.

    Guo, S., Hihath, J., Díez-Pérez, I. & Tao, N. Measurement and statistical analysis of single-molecule current–voltage characteristics, transition voltage spectroscopy, and tunneling barrier height. J. Am. Chem. Soc. 133, 19189–19197 (2011).

  30. 30.

    Cai, Z. et al. Exceptional single-molecule transport properties of ladder-type heteroacene molecular wires. J. Am. Chem. Soc. 138, 10630–10635 (2016).

  31. 31.

    Xiao, X., Nagahara, L. A., Rawlett, A. M. & Tao, N. Electrochemical gate-controlled conductance of single oligo(phenylene ethynylene)s. J. Am. Chem. Soc. 127, 9235–9240 (2005).

  32. 32.

    Li, Y. et al. Mechanical stretching-induced electron-transfer reactions and conductance switching in single molecules. J. Am. Chem. Soc. 139, 14699–14706 (2017).

  33. 33.

    Xiang, L. et al. Gate-controlled conductance switching in DNA. Nat. Commun. 8, 14471 (2017).

  34. 34.

    Frisenda, R., Janssen, V. A. E. C., Grozema, F. C., van der Zant, H. S. J. & Renaud, N. Mechanically controlled quantum interference in individual π-stacked dimers. Nat. Chem. 8, 1099–1104 (2016).

  35. 35.

    Caneva, S. et al. Mechanically controlled quantum interference in graphene break junctions. Nat. Nanotech. 13, 1126–1131 (2018).

  36. 36.

    Diez-Perez, I. et al. Gate-controlled electron transport in coronenes as a bottom-up approach towards graphene transistors. Nat. Commun. 1, 31 (2010).

  37. 37.

    Leary, E. et al. Structure−property relationships in redox-gated single molecule junctions—a comparison of pyrrolo-tetrathiafulvalene and viologen redox groups. J. Am. Chem. Soc. 130, 12204–12205 (2008).

  38. 38.

    Darwish, N. et al. Single molecular switches: electrochemical gating of a single anthraquinone-based norbornylogous bridge molecule. J. Phys. Chem. C 116, 21093–21097 (2012).

  39. 39.

    Zotti, L. A. et al. Heat dissipation and its relation to thermopower in single-molecule junctions. New J. Phys. 16, 015004 (2014).

  40. 40.

    Quek, S. Y. & Khoo, K. H. Predictive DFT-based approaches to charge and spin transport in single-molecule junctions and two-dimensional materials: successes and challenges. Acc. Chem. Res. 47, 3250–3257 (2014).

  41. 41.

    Baghernejad, M. et al. Highly-effective gating of single-molecule junctions: an electrochemical approach. Chem. Commun. 50, 15975–15978 (2014).

  42. 42.

    Fall, C. J., Binggeli, N. & Baldereschi, A. Deriving accurate work functions from thin-slab calculations. J. Phys. C 11, 2689–2696 (1999).

  43. 43.

    Paniago, R., Matzdorf, R., Meister, G. & Goldmann, A. Temperature dependence of Shockley-type surface energy bands on Cu(111), Ag(111) and Au(111). Surface Sci. 336, 113–122 (1995).

  44. 44.

    De Renzi, V. et al. Metal work-function changes induced by organic adsorbates: a combined experimental and theoretical study. Phys. Rev. Lett. 95, 046804 (2005).

Download references


The authors (N.T. and Y.L.) thank D.N. Beratan and A. Nitzan for stimulating discussions. The authors acknowledge financial support from the National Natural Science Foundation of China (grants nos. 21773117 and 21575062, to H.W., Z.W.), the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (Grant-in-Aid for Scientific Research on Innovative Areas ‘Molecular Architectonics: Orchestration of Single Molecules for Novel Functions’; grant no. 25110009, to Y.A. and M.B.), the Japan Society for the Promotion of Science (Grant-in-Aid for Young Scientists (Start-up); KAKENHI grant no. 15H06889, to M.B.) and the National Natural Science Foundation of China (grants nos. 21674023 and 51722301, to G.L. and G.Z.).

Author contributions

N.T., Y.L., L.X., G.Z., G.L., Y.A. and M.B. designed the research. G.L. and G.Z. synthesized the studied molecules. Y.L., A.R., H.W. and Z.W. performed and analysed the experiments. M.B., Y.A., D.R.B. and T.M. performed and analysed the DFT and transport calculations. Y.L., N.T., M.B. and G.L. wrote the paper. All authors contributed to revising the manuscript and agreed on its final content.

Author information


  1. Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ, USA

    • Yueqi Li
    • , Ali Rostamian
    • , Limin Xiang
    •  & Nongjian Tao
  2. Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan

    • Marius Buerkle
    •  & Yoshihiro Asai
  3. Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China

    • Guangfeng Li
    •  & Gang Zhou
  4. State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China

    • Hui Wang
    • , Zixiao Wang
    •  & Nongjian Tao
  5. London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London, UK

    • David R. Bowler
  6. International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) Tsukuba, Ibaraki, Japan

    • David R. Bowler
    •  & Tsuyoshi Miyazaki


  1. Search for Yueqi Li in:

  2. Search for Marius Buerkle in:

  3. Search for Guangfeng Li in:

  4. Search for Ali Rostamian in:

  5. Search for Hui Wang in:

  6. Search for Zixiao Wang in:

  7. Search for David R. Bowler in:

  8. Search for Tsuyoshi Miyazaki in:

  9. Search for Limin Xiang in:

  10. Search for Yoshihiro Asai in:

  11. Search for Gang Zhou in:

  12. Search for Nongjian Tao in:

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Yoshihiro Asai or Gang Zhou or Nongjian Tao.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–19, Supplementary Methods: First-principles transport calculations, Supplementary References 1–17

About this article

Publication history