Advances in magnetoelectric multiferroics

Abstract

The manipulation of magnetic properties by an electric field in magnetoelectric multiferroic materials has driven significant research activity, with the goal of realizing their transformative technological potential. Here, we review progress in the fundamental understanding and design of new multiferroic materials, advances in characterization and modelling tools to describe them, and the exploration of devices and applications. Focusing on the translation of the many scientific breakthroughs into technological innovations, we identify the key open questions in the field where targeted research activities could have maximum impact in transitioning scientific discoveries into real applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The multiferroic family tree.
Fig. 2: Multiferroic composite architectures.
Fig. 3: The Bi2O3–Fe2O3 phase diagram.
Fig. 4: Ferroelectric domain walls in multiferroics exhibit a wide variety of physical phenomena and are being explored as active elements for future applications.
Fig. 5: New fundamental building blocks for multiferroicity.
Fig. 6: New magnetoelectric multiferroic devices.

References

  1. 1.

    Schmid, H. Multiferroic magnetoelectrics. Ferroelectrics 162, 317–338 (1994).

    Google Scholar 

  2. 2.

    Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005).

    CAS  Google Scholar 

  3. 3.

    Ramesh, R. & Spaldin, N. A. Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007).

    CAS  Google Scholar 

  4. 4.

    Areas to watch. Science 318, 1858–1859 (2007).

  5. 5.

    Wang, Y., Hu, J., Lin, Y. & Nan, C.-W. Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2, 61–68 (2010).

    Google Scholar 

  6. 6.

    Pyatakov, A. P. & Zvezdin, A. K. Magnetoelectric and multiferroic media. Phys.-Uspekhi 55, 557–581 (2012).

    CAS  Google Scholar 

  7. 7.

    Tokura, Y., Seki, S. & Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 77, 076501 (2014).

    Google Scholar 

  8. 8.

    Dong, S., Liu, J.-M., Cheong, S. W. & Ren, Z. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv. Phys. 64, 519–626 (2015).

    CAS  Google Scholar 

  9. 9.

    Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).

    CAS  Google Scholar 

  10. 10.

    Hill, N. A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000).

    CAS  Google Scholar 

  11. 11.

    Vaz, C. et al. Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900–2918 (2010).

    CAS  Google Scholar 

  12. 12.

    Mundy, J. et al. Atomically engineered ferroic layers yield a room temperature magnetoelectric multiferroic. Nature 537, 523–527 (2016).

    CAS  Google Scholar 

  13. 13.

    Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).

    CAS  Google Scholar 

  14. 14.

    Zheng, H. et al. Multiferroic BaTiO3-CoFe2O4 Nanostructures. Science 303, 661–663 (2004).

    CAS  Google Scholar 

  15. 15.

    Cai, R. et al. Multiferroic nanopatterned hybrid material with room-temperature magnetic switching of the electric polarization. Adv. Mater. 29, 1604604 (2017).

    Google Scholar 

  16. 16.

    Poddar, S. et al. Room-temperature magnetic switching of the electric polarization in ferroelectric nanopillars. ACS Nano 12, 576–584 (2018).

    CAS  Google Scholar 

  17. 17.

    Belik, A. A. Polar and non-polar phases of BiMO3. J. Sol. Stat. Chem. 195, 32–40 (2012).

    CAS  Google Scholar 

  18. 18.

    Goodenough, J. B. & Zhou, J. Varied roles of Pb in transition-metal PbMO3 perovskites (M = Ti, V, Cr, Mn, Fe, Ni, Ru). Sci. Technol. Adv. Mater. 16, 036003 (2015).

    Google Scholar 

  19. 19.

    Inaguma, Y. et al. Structure and Mössbauer studies of F−O ordering in antiferromagnetic perovskite PbFeO2F. Chem. Mater. 17, 1386–1390 (2005).

    CAS  Google Scholar 

  20. 20.

    Simon, A. & Ravez, J. The oxyfluoride ferroelectrics. Ferroelectrics 24, 305–307 (1980).

    CAS  Google Scholar 

  21. 21.

    Katsumata, T., Nakashima, M., Umemoto, H. & Inaguma, Y. Synthesis of the novel perovskite-type oxyfluoride PbScO2F, under high pressure and high temperature. J. Solid State Chem. 181, 2737–2740 (2008).

    CAS  Google Scholar 

  22. 22.

    Lezaic, M. & Spaldin, N. A. High-temperature multiferroicity and strong magnetocrystalline anisotropy in 3d-5d double perovskites. Phys. Rev. B 83, 24410 (2011).

    Google Scholar 

  23. 23.

    Bilc, D. I. & Singh, D. J. Frustration of tilts and A-site driven ferroelectricity in KNbO3−LiNbO3 alloys. Phys. Rev. Lett. 96, 147602 (2006).

    CAS  Google Scholar 

  24. 24.

    Rushchanskii, K. Z. et al. A multiferroic material to search for the permanent electric dipole moment of the electron. Nat. Mater. 9, 649–654 (2010).

    CAS  Google Scholar 

  25. 25.

    Lee, J. H. et al. A strong ferroelectric ferromagnet created by means of spin-lattice coupling. Nature 466, 954–958 (2010).

    CAS  Google Scholar 

  26. 26.

    Bousquet, E., Spaldin, N. A. & Ghosez, Ph Strain-induced ferroelectricity in simple rocksalt binary oxides. Phys. Rev. Lett. 104, 037601 (2010).

    Google Scholar 

  27. 27.

    Fox, D. L. & Scott, J. F. Ferroelectrically induced ferromagnetism. J. Phys. C 10, L329–L331 (1977).

    CAS  Google Scholar 

  28. 28.

    Fennie, C. J. & Rabe, K. M. Ferroelectric transition in YMnO3 from first principles. Phys. Rev. B 72, 100103R (2005).

    Google Scholar 

  29. 29.

    Oh, Y. S. et al. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca, Sr)3Ti2O7 crystals. Nat. Mater. 14, 407–413 (2015).

    CAS  Google Scholar 

  30. 30.

    Bousquet, E. et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732–736 (2008).

    CAS  Google Scholar 

  31. 31.

    Benedek, N. A. & Fennie, C. J. Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. Phys. Rev. Lett. 106, 107204 (2012).

    Google Scholar 

  32. 32.

    Benedek, N. A., Rondinelli, J. M., Djani, H., Ghosez, Ph & Lightfoot, P. Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments. Dalton Trans. 44, 10543–10558 (2015).

    CAS  Google Scholar 

  33. 33.

    Choi, T. et al. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nat. Mater. 9, 253–258 (2010).

    CAS  Google Scholar 

  34. 34.

    Wu, W., Horibe, Y., Lee, N., Cheong, S.-W. & Guest, J. R. Conduction of topologically protected charged ferroelectric domain walls. Phys. Rev. Lett. 108, 077203 (2012).

    Google Scholar 

  35. 35.

    Ikeda, N. et al. Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature 436, 1136–1138 (2005).

    CAS  Google Scholar 

  36. 36.

    de Groot, J. et al. Charge order in LuFe2O4: an unlikely route to ferroelectricity. Phys, Rev. Lett. 108, 187601 (2012).

    Google Scholar 

  37. 37.

    Senn, M. S., Wright, J. P. & Attfield, J. P. Charge order and three-site distortions in the Verwey structure of magnetite. Nature 481, 173–176 (2012).

    CAS  Google Scholar 

  38. 38.

    Alexe, M. et al. Ferroelectric switching in multiferroic magnetite Fe3O4 thin films. Adv. Mater. 21, 4452–4455 (2009).

    CAS  Google Scholar 

  39. 39.

    Lunkenheimer, P. et al. Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism. Nat. Mater. 11, 755–758 (2012).

    CAS  Google Scholar 

  40. 40.

    Qin, W., Xu, B. & Ren, S. An organic approach for nanostructured multiferroics. Nanoscale 7, 9122–9132 (2015).

    CAS  Google Scholar 

  41. 41.

    Ren, S. & Wuttig, M. Organic exciton multiferroics. Adv. Mater. 24, 724–727 (2012).

    CAS  Google Scholar 

  42. 42.

    Stroppa, A., Barone, P., Jain, P., Perez-Mato, J. M. & Picozzi, S. Hybrid improper ferroelectricity in a multiferroic and magnetoelectric metal-organic framework. Adv. Mater. 25, 2284–2290 (2013).

    CAS  Google Scholar 

  43. 43.

    Kimura, T., Sekio, Y., Nakamura, H., Siegrist, T. & Ramirez, A. P. Cupric oxide as an induced-multiferroic with high-T C. Nat. Mater. 7, 291–294 (2008).

    CAS  Google Scholar 

  44. 44.

    Morin, M. et al. Incommensurate magnetic structure, Fe/Cu chemical disorder, and magnetic interactions in the high-temperature multiferroic YBaCuFeO5. Phys. Rev. B 91, 064408 (2015).

    Google Scholar 

  45. 45.

    Lee, J. H. & Rabe, K. M. Epitaxial-strain-induced multiferroicity in SrMnO3 from first principles. Phys. Rev. Lett. 104, 207204 (2010).

    Google Scholar 

  46. 46.

    Rondinelli, J. M. & Spaldin, N. A. Non-d 0 Mn-driven ferroelectricity in antiferromagnetic BaMnO3. Phys. Rev. B 79, 205119 (2009).

    Google Scholar 

  47. 47.

    Sakai, H. et al. Displacement type ferroelectricity with off-center magnetic ions in perovskite Sr1-xBaxMnO3. Phys. Rev. Lett. 107, 137601 (2011).

    CAS  Google Scholar 

  48. 48.

    Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003).

    CAS  Google Scholar 

  49. 49.

    Catalan, G. & Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009).

    CAS  Google Scholar 

  50. 50.

    Bea, H. et al. Evidence for room-temperature multiferroicity in a compound with a giant axial ratio. Phys. Rev. Lett. 102, 217603 (2009).

    CAS  Google Scholar 

  51. 51.

    He, Q. et al. Electrically controllable spontaneous magnetism in nanoscale mixed phase multiferroics. Nat. Commun. 2, 225 (2011).

    CAS  Google Scholar 

  52. 52.

    Yang, J. C. et al. Orthorhombic BiFeO3. Phys. Rev. Lett. 109, 247606 (2012).

    CAS  Google Scholar 

  53. 53.

    Dieguez, O., Gonzalez-Vazquez, O. E., Wojdel, J. C. & Íñiguez, J. First-principles predictions of low-energy phases of multiferroic BiFeO3. Phys Rev. B 83, 094105 (2011).

    Google Scholar 

  54. 54.

    Agbelele, A. et al. Strain and magnetic field induced spin-structure transitions in multiferroic BiFeO3. Adv. Mater. 29, 1602327 (2017).

    Google Scholar 

  55. 55.

    Palai, R. et al. β -phase and γ - β metal-insulator transition in multiferroic BiFeO3. Phys. Rev. B 77, 014110 (2008).

    Google Scholar 

  56. 56.

    Choi, T., Lee, S., Choi, Y. J., Kiryukhin, V. & Cheong, S.-W. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63–66 (2009).

    CAS  Google Scholar 

  57. 57.

    Gao, T. et al. A review: preparation of bismuth ferrite nanoparticles and its applications in visible-light induced photocatalysis. Rev. Adv. Mater. Sci. 40, 97–109 (2015).

    CAS  Google Scholar 

  58. 58.

    Kundys, B., Viret, M., Colson, D. & Kundys, D. O. Light-induced size changes in BiFeO3 crystals. Nat. Mater. 9, 803–805 (2010).

    CAS  Google Scholar 

  59. 59.

    Sando, D. et al. Large elasto-optic effect and reversible electrochromism in multiferroic BiFeO3. Nat. Commun. 7, 10718 (2016).

    CAS  Google Scholar 

  60. 60.

    Waghmare, S. D. et al. Efficient gas sensitivity in mixed bismuth ferrite micro (cubes) and nano (plates) structures. Mater. Res. Bull. 47, 4169–4173 (2012).

    CAS  Google Scholar 

  61. 61.

    Jarrier, R. et al. Surface phase transitions in BiFeO3 below room temperature. Phys. Rev. B 85, 184104 (2012).

    Google Scholar 

  62. 62.

    Marti, X. et al. Skin layer of BiFeO3 single crystals. Phys. Rev. Lett. 106, 236101 (2011).

    Google Scholar 

  63. 63.

    Selbach, S. M., Tybell, T., Einarsrud, M.-A. & Grande, T. Size-dependent properties of multiferroic BiFeO3 nanoparticles. Chem. Mater. 19, 6478–6484 (2007).

    CAS  Google Scholar 

  64. 64.

    Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–235 (2009).

    CAS  Google Scholar 

  65. 65.

    Farokhipoor, S. & Noheda, B. Conduction through 71o domain walls in BiFeO3 thin films. Phys. Rev. Lett. 107, 127601 (2011).

    CAS  Google Scholar 

  66. 66.

    Maksymovych, P. et al. Dynamic conductivity of ferroelectric domain walls in BiFeO3. Nano Lett. 11, 1906–1912 (2011).

    CAS  Google Scholar 

  67. 67.

    Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).

    CAS  Google Scholar 

  68. 68.

    Eliseev, E. A., Morozovska, A. N., Svechnikov, G. S., Gopalan, V. & Shur, V. Y. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Phys. Rev. B 83, 235313 (2011).

    Google Scholar 

  69. 69.

    Domingo, N. et al. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy. J. Phys. Condens. Matter 29, 334003 (2017).

    CAS  Google Scholar 

  70. 70.

    Daraktchiev, M., Catalan, G. & Scott, J. F. Landau theory of domain wall magnetoelectricity. Phys. Rev. B 81, 024115 (2010).

    Google Scholar 

  71. 71.

    Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotech. 5, 143–147 (2010).

    CAS  Google Scholar 

  72. 72.

    Meier, D. et al. Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284–288 (2012).

    CAS  Google Scholar 

  73. 73.

    Sluka, T., Tagantsev, A. K., Bednyakov, P. & Setter, N. Free-electron gas at charged domain walls in insulating BaTiO3. Nat. Commun. 4, 1808 (2013).

    Google Scholar 

  74. 74.

    Farokhipoor, S. et al. Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide. Nature 515, 379–383 (2014).

    CAS  Google Scholar 

  75. 75.

    Salje, E. K. H. Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. Chem. Phys. Chem. 11, 940–950 (2010).

    CAS  Google Scholar 

  76. 76.

    Meier, D. Functional domain walls in multiferroics. J. Phys. Condens. Matter 27, 463003 (2015).

    Google Scholar 

  77. 77.

    Matsubara, M., Kaneko, Y., He, J.-P., Okamoto, H. & Tokura, Y. Ultrafast polarization and magnetization response of multiferroic GaFeO3 using time-resolved nonlinear optical techniques. Phys. Rev. B 79, 140411 (2009).

    Google Scholar 

  78. 78.

    Kalinin, S. V. & Pennycook, S. Single-atom fabrication with electron and ion beams: from surfaces and two-dimensional materials toward three-dimensional atom-by-atom assembly. MRS Bull. 42, 637–643 (2016).

    Google Scholar 

  79. 79.

    Gross, I. et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).

    CAS  Google Scholar 

  80. 80.

    Orenstein, J. W. Ultrafast spectroscopy of quantum materials. Phys. Today 65, 44–50 (September, 2012).

  81. 81.

    Takahashi, K., Kida, N. & Tonouchi, M. Terahertz radiation by an ultrafast spontaneous polarization modulation of multiferroic BiFeO3 thin films. Phys. Rev. Lett. 96, 117402 (2006).

    Google Scholar 

  82. 82.

    Borisevich, A. Y. et al. Mapping octahedral tilts and polarization across a domain wall in BiFeO3 from scanning transmission electron microscopy image atomic column shape analysis. ACS Nano 4, 6071–6079 (2010).

    CAS  Google Scholar 

  83. 83.

    Verbeeck, J., Tian, H. & Schattschneider, P. Production and application of electron vortex beams. Nature 467, 301–304 (2010).

    CAS  Google Scholar 

  84. 84.

    Denev, S. A. et al. Probing ferroelectrics using optical second harmonic generation. J. Am. Ceram. Soc. 94, 2699–2727 (2011).

    CAS  Google Scholar 

  85. 85.

    De Luca, G. et al. Nanoscale design of polarization in ultrathin ferroelectric heterostructures. Nat. Commun. 8, 1419 (2017).

    Google Scholar 

  86. 86.

    Zhong, W., Vanderbilt, D. & Rabe, K. M. Phase transitions in BaTiO3 from first principles. Phys. Rev. Lett. 73, 1861–1864 (1994).

    CAS  Google Scholar 

  87. 87.

    Rabe, K. M. & Waghmare, U. V. Localized basis for effective lattice Hamiltonians: lattice Wannier functions. Phys. Rev. B 52, 13236–13246 (1995).

    CAS  Google Scholar 

  88. 88.

    Liu, S., Grinberg, I. & Rappe, A. M. Development of a bond-valence based interatomic potential for BiFeO3 for accurate molecular dynamics simulations. J. Phys. Condens. Matter 25, 102202 (2013).

    Google Scholar 

  89. 89.

    Rahmedov, D., Wang, D., Íñiguez, J. & Bellaiche, L. Magnetic cycloid of BiFeO3 from atomistic simulations. Phys. Rev. Lett. 109, 037207 (2012).

    CAS  Google Scholar 

  90. 90.

    Karpinsky, D. V. et al. Thermodynamic potential and phase diagram for multiferroic bismuth ferrite (BiFeO3). npj Comp. Mater. 3, 20 (2017).

    Google Scholar 

  91. 91.

    Garcia-Fernandez, P., Wojdel, J. C., Iniguez, J. & Junquera, J. Second-principles method for materials simulations including electron and lattice degrees of freedom. Phys. Rev. B 93, 195137 (2016).

    Google Scholar 

  92. 92.

    Wojdel, J. C., Hermet, P., Ljungberg, M. P., Ghosez, P. & Iniguez, J. First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides. J. Phys. Condens. Matter 25, 305401 (2013).

    Google Scholar 

  93. 93.

    Liu, S., Grinberg, I. & Rappe, A. Intrinsic ferroelectric switching from first principles. Nature 534, 360363 (2016).

    Google Scholar 

  94. 94.

    Bhattacharjee, S., Rahmedov, D., Wang, D., Íñiguez, J. & Bellaiche, L. Ultrafast switching of the electric polarization and magnetic chirality in BiFeO3 by an electric field. Phys. Rev. Lett. 112, 147601 (2014).

    Google Scholar 

  95. 95.

    Wang, D., Weerasinghe, J., Albarakati, A. & Bellaiche, L. Terahertz dielectric response and coupled dynamics of ferroelectrics and multiferroics from effective Hamiltonian simulations. Int. J. Mod. Phys. B 27, 1330016 (2013).

    Google Scholar 

  96. 96.

    Spaldin, N. A., Fiebig, M. & Mostovoy, M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys. Condens. Matter 20, 434203 (2008).

    Google Scholar 

  97. 97.

    Tolédano, P. et al. Primary ferrotoroidicity in antiferromagnets. Phys. Rev. B 92, 094431 (2015).

    Google Scholar 

  98. 98.

    Spaldin, N. A., Fechner, M., Bousquet, E., Balatsky, A. V. & Nordström, L. Monopole-based formalism for the diagonal magnetoelectric response. Phys. Rev. B 88, 094429 (2013).

    Google Scholar 

  99. 99.

    Gao, Y., Vanderbilt, D. & Xiao, D. Microscopic theory of spin toroidization in periodic crystals. Phys. Rev. B 97, 134423 (2018).

    Google Scholar 

  100. 100.

    Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).

    CAS  Google Scholar 

  101. 101.

    Chandra, P., Dawber, M., Littlewood, P. B. & Scott, J. F. Scaling of the coercive field with thickness in thin-film ferroelectrics. Ferroelectrics 313, 7–13 (2004).

    CAS  Google Scholar 

  102. 102.

    Manipatruni, S., Nikonov, D. E. & Young, I. A. Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338–343 (2018).

    CAS  Google Scholar 

  103. 103.

    Bibes, M. & Barthelemy, A. Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7, 425–426 (2008).

    CAS  Google Scholar 

  104. 104.

    Song, C., Cui, B., Li, F., Zhou, X. & Pan, F. Recent progress in voltage control of magnetism: materials, mechanisms, and performance. Prog. Mater. Sci. 87, 33–82 (2017).

    Google Scholar 

  105. 105.

    Chiba, D. et al. Magnetization vector manipulation by electric fields. Nature 455, 515–518 (2008).

    CAS  Google Scholar 

  106. 106.

    Allibe, J. et al. Room temperature electrical manipulation of giant magnetoresistance in spin valves exchange-biased with BiFeO3. Nano Lett. 12, 1141–1145 (2012).

    CAS  Google Scholar 

  107. 107.

    Heron, J. T. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370–373 (2014).

    CAS  Google Scholar 

  108. 108.

    Yu, P. et al. Interface control of bulk ferroelectric polarization. Proc. Natl Acad. Sci. USA 109, 9710–9715 (2012).

    CAS  Google Scholar 

  109. 109.

    Wu, S. M. et al. Reversible electric control of exchange bias in a multiferroic field effect device. Nat. Mater. 9, 756–761 (2010).

    CAS  Google Scholar 

  110. 110.

    He, X. et al. Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579–585 (2010).

    CAS  Google Scholar 

  111. 111.

    Gruner, M., Hoffmann, E. & Entel, P. Instability of the rhodium magnetic moment as the origin of the metamagnetic phase transition in a-FeRh. Phys. Rev. B 67, 064415 (2003).

    Google Scholar 

  112. 112.

    Moruzzi, V. L. & Marcus, P. M. Antiferromagnetic-ferromagnetic transition in FeRh. Phys. Rev. B 46, 2864 (1992).

    CAS  Google Scholar 

  113. 113.

    Cherifi, R. O. et al. Electric-field control of magnetic order above room temperature. Nat. Mater. 13, 345–351 (2014).

    CAS  Google Scholar 

  114. 114.

    Sun, N. X. & Srinivasan, G. Voltage control of magnetism in multiferroic heterostructures and devices. Spin 2, 1240004 (2012). 1.

    Google Scholar 

  115. 115.

    Lin, H. et al. Integrated magnetics and multiferroics for compact and power-efficient sensing, memory, power, RF, and microwave electronics. IEEE Trans. Magn. 52, 4002208 (2016).

    Google Scholar 

  116. 116.

    Smolenskii, G. A. & Chupis, I. E. Ferroelectromagnets. Sov. Phys. Usp. 25, 475–490 (1982).

    Google Scholar 

  117. 117.

    Manipatruni, S., Nikonov, D. E. & Young, I. A. Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338–343 (2018).

    CAS  Google Scholar 

  118. 118.

    Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–403 (2004).

    CAS  Google Scholar 

  119. 119.

    Nakayama, H. et al. Rashba-Edelstein magnetoresistance in metallic heterostructures. Phys. Rev. Lett. 117, 116602 (2016).

    Google Scholar 

  120. 120.

    Hoffmann, A. & Bader, S. D. Opportunities at the frontiers of spintronics. Phys. Rev. Appl. 4, 047001 (2015).

    Google Scholar 

  121. 121.

    Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35–42 (2019).

    Google Scholar 

  122. 122.

    Chu, Y. H. et al. Low voltage performance of epitaxial BiFeO3 films on Si substrates through lanthanum substitution. Appl. Phys. Lett. 92, 102909 (2008).

    Google Scholar 

  123. 123.

    Maksymovych, P. et al. Ultrathin limit and dead-layer effects in local polarization switching of BiFeO3. Phys. Rev. B 85, 014119 (2012).

    Google Scholar 

  124. 124.

    Lesne, E. et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 15, 1261–1266 (2016).

    CAS  Google Scholar 

  125. 125.

    Dhillon, S. S. et al. The 2017 terahertz science and technology road map. J. Phys. D 50, 043001 (2017).

    Google Scholar 

  126. 126.

    Juraschek, D., Fechner, M., Balatsky, A. V. & Spaldin, N. A. Dynamical multiferroicity. Phys. Rev. Mater. 1, 104401 (2017).

    Google Scholar 

  127. 127.

    Abraha, K. & Tilley, D. R. Theory of far infrared properties of magnetic surfaces, films and superlattices. Surface Sci. Rep. 24, 129–222 (1996).

    CAS  Google Scholar 

  128. 128.

    Talbayev, D. et al. Long-wavelength magnetic and magnetoelectric excitations in the ferroelectric antiferromagnet BiFeO3. Phys. Rev. B 83, 094403 (2011).

    Google Scholar 

  129. 129.

    Spaldin, N. A., Cheong, S. W. & Ramesh, R. Multiferroics: past, present, and future. Phys. Today 63, 38–43 (October, 2010).

Download references

Acknowledgements

N.A.S. acknowledges financial support from ETH Zürich, and the Roessler Prize of ETH Zürich, which supported her stay in Berkeley during the preparation of this manuscript. R.R. acknowledges the long-term support of the Quantum Materials programme funded by the US Department of Energy, Office of Basic Energy Sciences, which laid the foundation for the key elements of the work on multiferroics as well as the Purnendu Chatterjee chair. R.R. also gratefully acknowledges support from the DARPA-Semiconductor Research Corporation JUMP programme through the ASCENT centre as well as funding from the Intel Corporation. Both authors are immensely grateful to collaborators and colleagues around the world, as well as former and current students and postdocs, all of whom have contributed tremendously to this field and provided the material for this Review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. A. Spaldin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spaldin, N.A., Ramesh, R. Advances in magnetoelectric multiferroics. Nature Mater 18, 203–212 (2019). https://doi.org/10.1038/s41563-018-0275-2

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing