Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths

Abstract

The application of colloidal semiconductor quantum dots as single-dot light sources still requires several challenges to be overcome. Recently, there has been considerable progress in suppressing intensity fluctuations (blinking) by encapsulating an emitting core in a thick protective shell. However, these nanostructures still show considerable fluctuations in both emission energy and linewidth. Here we demonstrate type-I core/shell heterostructures that overcome these deficiencies. They are made by combining wurtzite semiconductors with a large, directionally anisotropic lattice mismatch, which results in strong asymmetric compression of the emitting core. This modifies the structure of band-edge excitonic states and leads to accelerated radiative decay, reduced exciton–phonon interactions, and suppressed coupling to the fluctuating electrostatic environment. As a result, individual asymmetrically strained dots exhibit highly stable emission energy (<1 meV standard deviation) and a subthermal room-temperature linewidth (~20 meV), concurrent with nearly nonblinking behaviour, high emission quantum yields, and a widely tunable emission colour.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Asymmetrically strained CdSe/CdxZn1−xSe QDs.
Fig. 2: Spectroscopic analysis of a light–heavy-hole splitting in core/shell CdSe/CdxZn1−xSe QDs (room temperature).
Fig. 3: Photoluminescence dynamics of CdSe/CdxZn1−xSe QDs and CdSe/CdS g-QDs (room temperature).
Fig. 4: Comparison of single-dot spectroscopic characteristics of CdSe/CdxZn1−xSe QDs and reference CdSe/CdS g-QDs (room temperature).
Fig. 5: Analysis of emission linewidths of CdSe/CdxZn1−xSe QDs and reference CdSe/CdS QDs (room temperature).

Data availability

The data that support the findings of this study are available from the authors on reasonable request.

References

  1. 1.

    Greytak, A. B. et al. Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions. Chem. Sci. 3, 2028–2034 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    Jeong, B. G. et al. Colloidal spherical quantum wells with near-unity photoluminescence quantum yield and suppressed blinking. ACS Nano 10, 9297–9305 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Page, R. C. et al. Near-unity quantum yields from chloride treated CdTe colloidal quantum dots. Small 11, 1548–1554 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Kim, T.-H. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photon. 5, 176–182 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).

    CAS  Article  Google Scholar 

  6. 6.

    Kwak, J. et al. High-power genuine ultraviolet light-emitting diodes based on colloidal nanocrystal quantum dots. Nano Lett. 15, 3793–3799 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    CAS  Article  Google Scholar 

  8. 8.

    Lim, J., Park, Y.-S. & Klimov, V. I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 17, 42–48 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Wu, K., Li, H. & Klimov, V. I. Tandem luminescent solar concentrators based on engineered quantum dots. Nat. Photon. 12, 105–110 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    Bronstein, N. D. et al. Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration. ACS Photon. 2, 1576–1583 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Frasco, M. & Chaniotakis, N. Semiconductor quantum dots in chemical sensors and biosensors. Sensors 9, 7266–7286 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    Jin, Z. & Hildebrandt, N. Semiconductor quantum dots for in vitro diagnostics and cellular imaging. Trends Biotechnol. 30, 394–403 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    Mahler, B. et al. Towards non-blinking colloidal quantum dots. Nat. Mater. 7, 659–664 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    Chen, Y. et al. ‘Giant’ multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130, 5026–5027 (2008).

    CAS  Article  Google Scholar 

  17. 17.

    Chen, O. et al. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    Qin, H. et al. Single-dot spectroscopy of zinc-blende CdSe/CdS core/shell nanocrystals: nonblinking and correlation with ensemble measurements. J. Am. Chem. Soc. 136, 179–187 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    García-Santamaría, F. et al. Suppressed Auger recombination in ‘giant’ nanocrystals boosts optical gain performance. Nano Lett. 9, 3482–3488 (2009).

    Article  Google Scholar 

  20. 20.

    Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).

    CAS  Article  Google Scholar 

  21. 21.

    Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A. & Nesbitt, D. J. ‘On’/‘off’ fluorescence intermittency of single semiconductor quantum dots. J. Chem. Phys. 115, 1028–1040 (2001).

    CAS  Article  Google Scholar 

  22. 22.

    Efros, A. L. & Rosen, M. Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phys. Rev. Lett. 78, 1110–1113 (1997).

    CAS  Article  Google Scholar 

  23. 23.

    Brovelli, S. et al. Nano-engineered electron–hole exchange interaction controls exciton dynamics in core–shell semiconductor nanocrystals. Nat. Commun. 2, 280 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    Zakharov, O., Rubio, A., Blase, X., Cohen, M. L. & Louie, S. G. Quasiparticle band structures of six II–VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe. Phys. Rev. B 50, 10780–10787 (1994).

    CAS  Article  Google Scholar 

  25. 25.

    Dabbousi, B. O. et al. (CdSe)ZnS core−shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475 (1997).

    CAS  Article  Google Scholar 

  26. 26.

    Tolbert, S. H. & Alivisatos, A. P. High-pressure structural transformations in semiconductor nanocrystals. Ann. Rev. Phys. Chem. 46, 595–626 (1995).

    CAS  Article  Google Scholar 

  27. 27.

    Fan, F. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Norris, D. J., Efros, A. L., Rosen, M. & Bawendi, M. G. Size dependence of exciton fine structure in CdSe quantum dots. Phys. Rev. B 53, 16347–16354 (1996).

    CAS  Article  Google Scholar 

  29. 29.

    Karazhanov, S. Z. et al. Electronic structure and band parameters for ZnX (X = O, S, Se, Te). J. Cryst. Growth 287, 162–168 (2006).

    CAS  Article  Google Scholar 

  30. 30.

    Yang, C. S. et al. Compressive strain induced heavy hole and light hole splitting of Zn1−xCdxSe epilayers grown by molecular beam epitaxy. Mater. Chem. Phys. 78, 602–607 (2003).

    CAS  Article  Google Scholar 

  31. 31.

    Moise, T. S., Guido, L. J. & Barker, R. C. Strain-induced heavy-hole-to-light-hole energy splitting in (111)B pseudomorphic InyGa1−yAs quantum wells. Phys. Rev. B 47, 6758–6761 (1993).

    CAS  Article  Google Scholar 

  32. 32.

    Ren, S.-F., Xia, J.-B., Han, H.-X. & Wang, Z.-P. Electronic structure and optical properties of [(ZnSe)m(CdSe)n]N–ZnSe multiple quantum wells. Phys. Rev. B 50, 14416–14420 (1994).

    CAS  Article  Google Scholar 

  33. 33.

    Spinicelli, P. et al. Bright and grey states in CdSe–CdS nanocrystals exhibiting strongly reduced blinking. Phys. Rev. Lett. 102, 136801 (2009).

    CAS  Article  Google Scholar 

  34. 34.

    Fernee, M. J., Tamarat, P. & Lounis, B. Spectroscopy of single nanocrystals. Chem. Soc. Rev. 2014, 1311–1337 (2014).

  35. 35.

    Crooker, S. A., Barrick, T., Hollingsworth, J. A. & Klimov, V. I. Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime. Appl. Phys. Lett. 82, 2793–2795 (2003).

    CAS  Article  Google Scholar 

  36. 36.

    Gao, Y. & Peng, X. Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: the effects of surface and ligands. J. Am. Chem. Soc. 137, 4230–4235 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    Empedocles, S. A., Norris, D. J. & Bawendi, M. G. Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots. Phys. Rev. Lett. 77, 3873–3876 (1996).

    CAS  Article  Google Scholar 

  38. 38.

    Fernée, M. J. et al. Spontaneous spectral diffusion in CdSe quantum dots. J. Phys. Chem. Lett. 3, 1716–1720 (2012).

    Article  Google Scholar 

  39. 39.

    Kelley, A. M. Electron−phonon coupling in CdSe nanocrystals. J. Phys. Chem. Lett. 1, 1296–1300 (2010).

    CAS  Article  Google Scholar 

  40. 40.

    Takagahara, T. Electron–phonon interactions and excitonic dephasing in semiconductor nanocrystals. Phys. Rev. Lett. 71, 3577–3580 (1993).

    CAS  Article  Google Scholar 

  41. 41.

    Cragg, G. E. & Efros, A. L. Suppression of Auger processes in confined structures. Nano. Lett. 10, 313–317 (2010).

    CAS  Article  Google Scholar 

  42. 42.

    Tessier, M. D. et al. Spectroscopy of colloidal semiconductor core/shell nanoplatelets with high quantum yield. Nano. Lett. 13, 3321–3328 (2013).

    CAS  Article  Google Scholar 

  43. 43.

    Rainò, G. et al. Single cesium lead halide perovskite nanocrystals at low temperature: Fast single-photon emission, reduced blinking, and exciton fine structure. ACS Nano 10, 2485–2490 (2016).

    Article  Google Scholar 

  44. 44.

    Stanley, R. P., Hawdon, B. J., Hegarty, J., Feldman, R. D. & Austin, R. F. Room‐temperature exciton luminescence in II–VI quantum wells. Appl. Phys. Lett. 58, 2972–2974 (1991).

    CAS  Article  Google Scholar 

  45. 45.

    Fujiwara, K., Tsukada, N. & Nakayama, T. Observation of free excitons in room‐temperature photoluminescence of GaAs/AlGaAs single quantum wells. Appl. Phys. Lett. 53, 675–677 (1988).

    CAS  Article  Google Scholar 

  46. 46.

    Hines, M. A. & Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471 (1996).

    CAS  Article  Google Scholar 

  47. 47.

    Krauss, T. D. & Wise, F. W. Raman-scattering study of exciton–phonon coupling in PbS nanocrystals. Phys. Rev. B 55, 9860–9865 (1997).

    CAS  Article  Google Scholar 

  48. 48.

    Cui, J. et al. Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: Implications for exciton–phonon coupling and the optimization of spectral linewidths. Nano. Lett. 16, 289–296 (2016).

    CAS  Article  Google Scholar 

  49. 49.

    Kelley, A. M. Electron–phonon coupling in CdSe nanocrystals from an atomistic phonon model. ACS Nano 5, 5254–5262 (2011).

    CAS  Article  Google Scholar 

  50. 50.

    Schmitt-Rink, S., Miller, D. A. B. & Chemla, D. S. Theory of the linear and nonlinear optical properties of semiconductor microcrystallites. Phys. Rev. B 35, 8113–8125 (1987).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

V.I.K. and Y.-S.P. were supported by the Solar Photochemistry Program of the Chemical Sciences, Biosciences and Geosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy. J.L. acknowledges support by the Laboratory Directed Research and Development Program at Los Alamos National Laboratory.

Author information

Affiliations

Authors

Contributions

V.I.K. initiated the study. J.L. developed the synthesis of the asymmetrically strained QDs and fabricated QD samples for this work. Y.-S.P. conducted spectroscopic measurements and analysed the data. V.I.K. and Y.-S.P. prepared the manuscript with input from J.L.

Corresponding author

Correspondence to Victor I. Klimov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Sections 1,2, Supplementary Figures 1–7, Supplementary Table 1, Supplementary References 1–10

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, YS., Lim, J. & Klimov, V.I. Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths. Nature Mater 18, 249–255 (2019). https://doi.org/10.1038/s41563-018-0254-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing