Abstract

Recording infraslow brain signals (<0.1 Hz) with microelectrodes is severely hampered by current microelectrode materials, primarily due to limitations resulting from voltage drift and high electrode impedance. Hence, most recording systems include high-pass filters that solve saturation issues but come hand in hand with loss of physiological and pathological information. In this work, we use flexible epicortical and intracortical arrays of graphene solution-gated field-effect transistors (gSGFETs) to map cortical spreading depression in rats and demonstrate that gSGFETs are able to record, with high fidelity, infraslow signals together with signals in the typical local field potential bandwidth. The wide recording bandwidth results from the direct field-effect coupling of the active transistor, in contrast to standard passive electrodes, as well as from the electrochemical inertness of graphene. Taking advantage of such functionality, we envision broad applications of gSGFET technology for monitoring infraslow brain activity both in research and in the clinic.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The experimental data that support the figures within this paper and other findings of this study can be accessed by contacting the corresponding authors. Authors can make data available on request, agreeing on data formats needed.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Hughes, S. W., Lőrincz, M. L., Parri, H. R. & Crunelli, V. in Progress in Brain Research Vol. 193 (eds Van Someren, E. J. W., Van Der Werf Y. D., Roelfsema P. R., Mansvelder H. D. & Lopes Da Silva, F. H.) 145-162 (Elsevier, Amsterdam, 2011).

  2. 2.

    Mitra, A. et al. Spontaneous infra-slow brain activity has unique spatiotemporal dynamics and laminar structure. Neuron 98, 297–305 (2018).

  3. 3.

    Lecci, S. et al. Coordinated infraslow neural and cardiac oscillations mark fragility and offline periods in mammalian sleep. Sci. Adv. 3, e1602026 (2017).

  4. 4.

    Mitra, A., Snyder, A. Z., Tagliazucchi, E., Laufs, H. & Raichle, M. E. Propagated infra-slow intrinsic brain activity reorganizes across wake and slow wave sleep. Elife 4, e10781 (2015).

  5. 5.

    Hiltunen, T. et al. Infra-slow EEG fluctuations are correlated with resting-state network dynamics in fMRI. J. Neurosci. 34, 356–362 (2014).

  6. 6.

    Leopold, D. A., Murayama, Y. & Logothetis, N. K. Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. Cereb. Cortex 13, 422–433 (2003).

  7. 7.

    Kelly, A. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X. & Milham, M. P. Competition between functional brain networks mediates behavioral variability. NeuroImage 39, 527–537 (2008).

  8. 8.

    Chung, D. Y. & Ayata, C. in Primer on Cerebrovascular Diseases 2nd edn (eds Caplan, L. R. et al.) 149-153 (Academic, London, 2017).

  9. 9.

    Hartings, J. A. et al. The continuum of spreading depolarizations in acute cortical lesion development: examining Leão’s legacy. J. Cereb. Blood Flow Metab. 37, 1571–1594 (2017).

  10. 10.

    Dreier, J. P. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat. Med. 17, 439–447 (2011).

  11. 11.

    Dreier, J. P. & Reiffurth, C. The stroke–migraine depolarization continuum. Neuron 86, 902–922 (2015).

  12. 12.

    Lauritzen, M. et al. Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J. Cereb. Blood Flow Metab. 31, 17–35 (2011).

  13. 13.

    Hartings, J. A. et al. Direct current electrocorticography for clinical neuromonitoring of spreading depolarizations. J. Cereb. Blood Flow Metab. 37, 1857–1870 (2017).

  14. 14.

    Dreier, J. P. et al. Recording, analysis, and interpretation of spreading depolarizations in neurointensive care: review and recommendations of the COSBID research group. J. Cereb. Blood Flow Metab. 37, 1595–1625 (2016).

  15. 15.

    Kovac, S., Speckmann, E.-J. & Gorji, A. Uncensored EEG: The role of DC potentials in neurobiology of the brain. Prog. Neurobiol. 165–167, 51–65 (2018).

  16. 16.

    Vanhatalo, S., Voipio, J. & Kaila, K. Full-band EEG (FbEEG): an emerging standard in electroencephalography. Clin. Neurophysiol. 116, 1–8 (2005).

  17. 17.

    Vanhatalo, S. et al. Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. Proc. Natl Acad. Sci. USA 101, 5053–5057 (2004).

  18. 18.

    Hofmeijer, J. et al. Detecting cortical spreading depolarization with full band scalp electroencephalography:an illusion? Front. Neurol. https://doi.org/10.3389/fneur.2018.00017 (2018).

  19. 19.

    Ayata, C. & Lauritzen, M. Spreading depression, spreading depolarizations, and the cerebral vasculature. Physiol. Rev. 95, 953–993 (2015).

  20. 20.

    Stensaas, S. S. & Stensaas, L. J. Histopathological evaluation of materials implanted in the cerebral cortex. Acta Neuropathol. 41, 145–155 (1978).

  21. 21.

    Li, C. et al. Evaluation of microelectrode materials for direct-current electrocorticography. J. Neural Eng. 13, 016008 (2015).

  22. 22.

    Nelson, M. J., Pouget, P., Nilsen, E. A., Patten, C. D. & Schall, J. D. Review of signal distortion through metal microelectrode recording circuits and filters. J. Neurosci. Methods 169, 141–157 (2008).

  23. 23.

    Stacey, W. C. et al. Potential for unreliable interpretation of EEG recorded with microelectrodes. Epilepsia 54, 1391–1401 (2013).

  24. 24.

    Kuzum, D. et al. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat. Commun. 5, 5259 (2014).

  25. 25.

    Deneux, T. et al. Accurate spike estimation from noisy calcium signals for ultrafast three-dimensional imaging of large neuronal populations in vivo. Nat. Commun. 7, 12190 (2016).

  26. 26.

    Fang, H. et al. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat. Biomed. Eng. 1, 0038 (2017).

  27. 27.

    Heremans, P. et al. Mechanical and electronic properties of thin‐film transistors on plastic, and their integration in flexible electronic applications. Adv. Mater. 28, 4266–4282 (2016).

  28. 28.

    Hess, L. H., Seifert, M. & Garrido, J. A. Graphene transistors for bioelectronics. Proc. IEEE 101, 1780–1792 (2013).

  29. 29.

    Kim, B. J. et al. High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett. 10, 3464–3466 (2010).

  30. 30.

    Kostarelos, K., Vincent, M., Hebert, C. & Garrido, J. A. Graphene in the design and engineering of next-generation neural interfaces. Adv. Mater. 29, 1700909 (2017).

  31. 31.

    Benno, M. B. et al. Mapping brain activity with flexible graphene micro-transistors. 2D Mater. 4, 025040 (2017).

  32. 32.

    Hébert, C. et al. Flexible graphene solution‐gated field‐effect transistors: efficient transducers for micro‐electrocorticography. Adv. Funct. Mater. 28, 1703976 (2018).

  33. 33.

    Shinwari, M. W. et al. Microfabricated reference electrodes and their biosensing applications. Sensors 10, 1679 (2010).

  34. 34.

    Chen, S., Liu, Y. & Chen, J. Heterogeneous electron transfer at nanoscopic electrodes: importance of electronic structures and electric double layers. Chem. Soc. Rev. 43, 5372–5386 (2014).

  35. 35.

    Brownson, D. A. & Banks, C. E. The electrochemistry of CVD graphene: progress and prospects. Phys. Chem. Chem. Phys. 14, 8264–8281 (2012).

  36. 36.

    Brownson, D. A. C., Munro, L. J., Kampouris, D. K. & Banks, C. E. Electrochemistry of graphene: not such a beneficial electrode material? RSC Adv. 1, 978 (2011).

  37. 37.

    Valdes, C. P. et al. Speckle contrast optical spectroscopy, a non-invasive, diffuse optical method for measuring microvascular blood flow in tissue. Biomed. Opt. Express 5, 2769–2784 (2014).

  38. 38.

    Boas, D. A. & Dunn, A. K. Laser speckle contrast imaging in biomedical optics. J. Biomed. Opt. 15, 011109 (2010).

  39. 39.

    Shibata, M. & Suzuki, N. Exploring the role of microglia in cortical spreading depression in neurological disease. J. Cereb. Blood Flow Metab. 37, 1182–1191 (2017).

  40. 40.

    Mitra, A. & Raichle, M. E. How networks communicate: propagation patterns in spontaneous brain activity. Phil. Trans. R. Soc. B 371, 20150546 (2016).

  41. 41.

    Herreras, O. Local field potentials: myths and misunderstandings. Front. Neural Circuits 10, 101 (2016).

  42. 42.

    Massimini, M., Huber, R., Ferrarelli, F., Hill, S. & Tononi, G. The sleep slow oscillation as a traveling wave. J. Neurosci. 24, 6862–6870 (2004).

  43. 43.

    Capone, C. et al. Slow waves in cortical slices: how spontaneous activity is shaped by laminar structure.Cereb. Cortex https://doi.org/10.1093/cercor/bhx326 (2017).

  44. 44.

    Park, D.-W. et al. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat. Commun. 5, 5258 (2014).

  45. 45.

    Carlson, A. P. et al. Cortical spreading depression occurs during elective neurosurgical procedures. J. Neurosurg. 126, 266–273 (2017).

  46. 46.

    de la Rosa, C. J. L. et al. Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu. Appl. Phys. Lett. 102, 022101 (2013).

  47. 47.

    Illa, X., Rebollo, B., Gabriel, G., Sánchez-Vives, M. V. & Villa, R. Proc. SPIE 9518, 951803 (2015).

  48. 48.

    Bandyopadhyay, R., Gittings, A., Suh, S., Dixon, P. & Durian, D. J. Speckle-visibility spectroscopy: a tool to study time-varying dynamics. Rev. Sci. Instrum. 76, 093110 (2005).

Download references

Acknowledgements

This work was funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 696656 (Graphene Flagship) and no. 732032 (BrainCom). This work has made use of the Spanish ICTS Network MICRONANOFABS partially supported by MINECO and the ICTS ‘NANBIOSIS’, more specifically by the Micro-NanoTechnology Unit of the CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) at the IMB-CNM. E.M.C. acknowledges that this work has been done in the framework of the PhD in Electrical and Telecommunication Engineering at the Universitat Autònoma de Barcelona. E..C. thanks the Spanish Ministerio de Economía y Competitividad for the Juan de la Cierva postdoctoral grant IJCI-2015–25201. T. Durduran acknowledges support from Fundació CELLEX Barcelona, Ministerio de Economía y Competitividad /FEDER (PHOTODEMENTIA, DPI2015–64358-C2–1-R), the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015–0522) and the Obra Social “la Caixa” Foundation (LlumMedBcn). M.V.S.V. acknowledges support from MINECO BFU2017-85048-R. ICN2 is supported by the Severo Ochoa programme fromSpanish MINECO (grant no. SEV-2017-0706).

Author information

Affiliations

  1. Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain

    • Eduard Masvidal-Codina
    • , Xavi Illa
    • , Elisabet Prats-Alfonso
    • , Javier Martínez-Aguilar
    • , Philippe Godignon
    • , Gemma Rius
    • , Rosa Villa
    •  & Anton Guimerà-Brunet
  2. Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain

    • Xavi Illa
    • , Elisabet Prats-Alfonso
    • , Javier Martínez-Aguilar
    • , Rosa Villa
    •  & Anton Guimerà-Brunet
  3. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain

    • Miguel Dasilva
    • , Alessandra Camassa
    •  & Maria V. Sanchez-Vives
  4. Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain

    • Andrea Bonaccini Calia
    • , Jose M. De la Cruz
    • , Ramon Garcia-Cortadella
    • , Elena Del Corro
    • , Jessica Bousquet
    • , Clement Hébert
    •  & Jose A. Garrido
  5. ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain

    • Tanja Dragojević
    • , Ernesto E. Vidal-Rosas
    •  & Turgut Durduran
  6. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

    • Turgut Durduran
    • , Maria V. Sanchez-Vives
    •  & Jose A. Garrido

Authors

  1. Search for Eduard Masvidal-Codina in:

  2. Search for Xavi Illa in:

  3. Search for Miguel Dasilva in:

  4. Search for Andrea Bonaccini Calia in:

  5. Search for Tanja Dragojević in:

  6. Search for Ernesto E. Vidal-Rosas in:

  7. Search for Elisabet Prats-Alfonso in:

  8. Search for Javier Martínez-Aguilar in:

  9. Search for Jose M. De la Cruz in:

  10. Search for Ramon Garcia-Cortadella in:

  11. Search for Philippe Godignon in:

  12. Search for Gemma Rius in:

  13. Search for Alessandra Camassa in:

  14. Search for Elena Del Corro in:

  15. Search for Jessica Bousquet in:

  16. Search for Clement Hébert in:

  17. Search for Turgut Durduran in:

  18. Search for Rosa Villa in:

  19. Search for Maria V. Sanchez-Vives in:

  20. Search for Jose A. Garrido in:

  21. Search for Anton Guimerà-Brunet in:

Contributions

E.M.C. carried out most of the fabrication and characterization of the gSGFET arrays, contributed to the design and performance of the in vivo experiments, analysed the data and wrote the manuscript. X.I. designed the neural probes and fabricated the microelectrode arrays. A.B.C. contributed to the fabrication and characterization of the gSGFET arrays. M.D. performed the in vivo experiments. P.G., C.H., J.B. and E.P.A. contributed to the growth of the CVD graphene. E.P.A., E.D.C. and J.M.D.L.C. contributed to the transfer of graphene. E.P.A., E.D.C. and G.R. contributed to the characterization of CVD graphene. J.M.A. contributed to the fabrication of the custom electronic instrumentation and development of a Python-based user interface. A.C. contributed to the CSD propagation analysis. R.G.C. contributed in the noise characterization and analysis of the devices. T. Dragojević, E.E.V.R. and T. Durduran contributed to the in vivo measurements and analysis of cerebral blood flow. M.D., M.V.S.V., A.G.B., R.V. and J.A.G. participated in the design of the in vivo experiments and thoroughly reviewed the manuscript. A.G.B. contributed in the design and fabrication of the custom electronic instrumentation, development of a custom gSGFET Python library and analysis of the data. All authors read and reviewed the manuscript.

Competing interests

Patent application (no. P201831068) filled by CSIC, ICREA, CIBER, ICN2 and IDIBAPS; inventors: A.G.B., E.M.C., X.I., R.V., M.V.S.V. and J.A.G.; concerning a graphene transistor system for measuring electrophysiological signals (pending).

Corresponding authors

Correspondence to Jose A. Garrido or Anton Guimerà-Brunet.

Supplementary information

  1. Supplementary Information

    Supplementary Table 1, Supplementary Figures 1–13, Supplementary References 1–11

  2. Reporting Summary

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41563-018-0249-4

Further reading