Article | Published:

Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes

Nature Materialsvolume 18pages163168 (2019) | Download Citation


Metal-induced ordered microporous polymers (MMPs), a class of porous polymer, are synthesized from amine-bearing polymers, small organic linkers and divalent metal ions using a polymer-directed chemical synthesis process. Specifically, small organic linkers first coordinate to metal ions, with the resulting unit cells then self-assembling along the extension of polymer chains to construct three-dimensional frameworks. The MMPs demonstrate good controllability of crystal and framework size, as well as hydrolytic stability. MMP dispersions were coated on a modified polysulfone substrate to fabricate MMP/mPSf membranes with an ultrathin selective layer (below 50 nm) and surface areas of >100 cm2. The MMPs are readily fabricated into defect-free thin selective-layered membranes with high CO2 permeance (3,000 GPU) and stable CO2/N2 selectivity (78) under both humid and dry gas feed conditions, demonstrating promising CO2 membrane separation performance. This synthetic methodology could be extended to other polymers, potentially enabling facile synthesis of membrane materials.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

All the data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Baker, R. & Low, B. T. Gas separation membrane materials: a perspective. Macromolecules 47, 6999–7013 (2014).

  2. 2.

    Bernardo, P., Drioli, E. & Golemme, G. Membrane gas separation: a review/state of the art. Ind. Eng. Chem. Res. 48, 4638–4663 (2009).

  3. 3.

    Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

  4. 4.

    Rosi, N. L. et al. Hydrogen storage in microporous metal organic frameworks. Science 300, 1127–1129 (2003).

  5. 5.

    Furukawa, H. et al. Ultra high porosity in metal–organic frameworks. Science 329, 424–428 (2010).

  6. 6.

    Hayashi, H., Côté, A. P., Furukawa, H., O’Keeffe, M. & Yaghi, O. M. Zeolite aimidazolate frameworks. Nat. Mater. 6, 501–506 (2007).

  7. 7.

    Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

  8. 8.

    Kuhn, P., Antonietti, M. & Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47, 3450–3453 (2008).

  9. 9.

    Choi, M. et al. Amphiphilic organo silane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat. Mater. 5, 718–723 (2006).

  10. 10.

    Hsueh, H. Y., Yao, C. T. & Ho, R. M. Well-ordered nanohybrids and nanoporous materials from gyroid block copolymer templates. Chem. Soc. Rev. 44, 1974–2018 (2015).

  11. 11.

    Du, N. et al. Polymer nanosieve membranes for CO2-capture applications. Nat. Mater. 10, 372–375 (2011).

  12. 12.

    Guiver, M. D. & Lee, Y. M. Polymer rigidity improves microporous membranes. Science 339, 284–285 (2013).

  13. 13.

    Peng, Y. et al. Metal–organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

  14. 14.

    Li, P. et al. Recent developments in membranes for efficient hydrogen purification. J. Membr. Sci. 495, 130–168 (2015).

  15. 15.

    Jeon, M. Y. et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 543, 690–694 (2017).

  16. 16.

    Yin, Y. & Guiver, M. D. Microporous polymers: ultrapermeable membranes. Nat. Mater. 16, 880–881 (2017).

  17. 17.

    Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, 1137–1147 (2017).

  18. 18.

    Livingston, A. & Baker, R. Membranes from academia to industry. Nat. Mater. 16, 280–282 (2017).

  19. 19.

    Kitao, T., Zhang, Y., Kitagawa, S., Wang, B. & Uemura, T. Hybridization of MOFs and polymers. Chem. Soc. Rev. 46, 3108–3133 (2017).

  20. 20.

    Dechnik, J., Gascon, J., Doonan, C. J., Janiak, C. & Sumby, C. J. Mixed-matrix membranes. Angew. Chem. Int. Ed. 56, 9292–9310 (2017).

  21. 21.

    Zhang, Z., Nguyen, H. T. H., Miller, S. A. & Cohen, S. M. PolyMOFs: a class of interconvertible polymer–metal–organic-framework hybrid materials. Angew. Chem. Int. Ed. 54, 6152–6157 (2015).

  22. 22.

    Zhang, Z. et al. Polymer–metal–organic-framework (polyMOFs) as water tolerant materials for selective carbon dioxide separations. J. Am. Chem. Soc. 138, 920–925 (2016).

  23. 23.

    Yuan, S. et al. Improvement of CO2/N2 separation characteristics of polyvinylamine by modifying with ethylenediamine. J. Membr. Sci. 378, 425–437 (2011).

  24. 24.

    Robeson, L. M. The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008).

  25. 25.

    Merkel, T. C., Lin, H., Wei, X. & Baker, R. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J. Membr. Sci. 359, 126–139 (2010).

Download references


This research is supported by the National Key R&D Program of China (no. 2017YFB0603400) and the Natural Science Foundation of China (no. 21436009).

Author information

Author notes

  1. These authors contributed equally: Zhihua Qiao and Song Zhao


  1. Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China

    • Zhihua Qiao
    • , Song Zhao
    • , Menglong Sheng
    • , Jixiao Wang
    • , Shichang Wang
    •  & Zhi Wang
  2. State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, China

    • Zhihua Qiao
    •  & Chongli Zhong
  3. Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, China

    • Zhihua Qiao
    • , Song Zhao
    • , Menglong Sheng
    • , Jixiao Wang
    • , Shichang Wang
    •  & Zhi Wang
  4. Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China

    • Menglong Sheng
    • , Jixiao Wang
    • , Zhi Wang
    •  & Michael D. Guiver
  5. State Key Laboratory of Engines, Tianjin University, Tianjin, China

    • Michael D. Guiver


  1. Search for Zhihua Qiao in:

  2. Search for Song Zhao in:

  3. Search for Menglong Sheng in:

  4. Search for Jixiao Wang in:

  5. Search for Shichang Wang in:

  6. Search for Zhi Wang in:

  7. Search for Chongli Zhong in:

  8. Search for Michael D. Guiver in:


Z.Q., S.Z. and M.S. fabricated the materials and conducted the characterization. Z.W., C.Z. and M.D.G. carried out experimental design. J.W. and S.W. performed data analysis. Z.Q., S.Z., Z.W., C.Z. and M.D.G. wrote the paper. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Zhi Wang or Chongli Zhong or Michael D. Guiver.

Supplementary Information

  1. Supplementary Information

    Supplementary Sections 1–8, Supplementary Figures 1–19, Supplementary Tables 1–2, Supplementary References 1–13

About this article

Publication history




Issue Date


Further reading