Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The mechanism of the ultrafast crystal growth of pure metals from their melts

Abstract

Pure metals can have ultrafast growth rates from their melts, such as a crystal of pure nickel that grows at a rate reaching 70 m s−1. These extraordinary growth rates suggest that metallic crystals might provide the next generation of phase-change materials. The huge crystal growth rates of metals are the consequence of kinetics without activated control, in sharp contrast to the prediction of the ‘classic’ theory of crystal growth. While the existence of barrierless growth kinetics is now well established in atomic melts, the physical explanation for the absence of an activation barrier to ordering remains unclear. It is something of a paradox that diffusion in the liquid metal is governed by thermal activation while the movement of the same atoms organizing into a crystal is not. Here we use computer simulations of crystallization in pure metals to explicitly resolve the origin of the barrierless growth kinetics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal growth rate V as a function of temperature.
Fig. 2: The advancement of the Lennard-Jones crystal/liquid interface during energy minimization.
Fig. 3: The ordering process of the Cu crystal/liquid interface during energy minimization.
Fig. 4: The relation between the turnover temperature of crystallization velocities and the kinetic instability temperature.
Fig. 5

Similar content being viewed by others

Data availability

The data sets generated and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. Langer, L. Instabilities and pattern-formation in crystal-growth. Rev. Mod. Phys. 52, 1–28 (1980).

    Article  CAS  Google Scholar 

  2. Herlach, D. M. Containerless undercooling and solidification of pure metals. Ann. Rev. Mater. Sci. 21, 23–44 (1991).

    Article  CAS  Google Scholar 

  3. Wilson, H. A. On the velocity of solidification and the viscosity of super-cooled liquids. Philos. Mag. 50, 238–250 (1900).

    Article  Google Scholar 

  4. Frenkel, J. Kinetic Theory of Liquids (Oxford Univ. Press, Oxford, 1946).

  5. Ediger, M., Harrowell, P. & Yu, L. Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. J. Chem. Phys. 128, 034709 (2008).

    Article  CAS  Google Scholar 

  6. Coriell, S. R. & Turnbull, D. Relative roles of heat transport and interface rearrangement rates in the rapid growth of crystals in undercooled melts. Acta Metall. 30, 2135–2139 (1982).

    Article  CAS  Google Scholar 

  7. Broughton, J. Q., Gilmer, G. H. & Jackson, K. A. Crystallization rates of a Lennard-Jones liquid. Phys. Rev. Lett. 49, 1496–1500 (1982).

    Article  CAS  Google Scholar 

  8. Mikheev, L. V. & Chernov, A. A. Mobility of a diffuse simple crystal melt interface. J. Cryst. Growth 112, 591–596 (1991).

    Article  Google Scholar 

  9. Wu, K. A., Wang, C. H., Hoyt, J. J. & Karma, A. Ginzburg–Landau theory of the bcc-liquid interface kinetic coefficient. Phys. Rev. B 91, 014107 (2015).

    Article  Google Scholar 

  10. Wu, K. A., Lin, S. C. & Karma, A. Two-mode Ginzburg–Landau theory of crystalline anisotropy for fcc-liquid interfaces. Phys. Rev. B 93, 054114 (2016).

    Article  Google Scholar 

  11. Hoyt, J. J., Asta, M. & Karma, A. Atomistic and continuum modelling of dendritic solidification. Mater. Sci. Eng. R41, 121–163 (2003).

    Article  CAS  Google Scholar 

  12. Ashkenazy, Y. & Averback, R. S. Atomic mechanisms controlling crystallization behaviour in metals at deep undercoolings. Europhys. Lett. 79, 26005 (2007). (1-6).

    Article  Google Scholar 

  13. Ashkenazy, Y. & Averback, R. S. Kinetic stages in the crystallization of deeply undercooled body-centered-cubic and face-centered-cubic metals. Acta Mater. 58, 524–530 (2010).

    Article  CAS  Google Scholar 

  14. Mendelev, M. I. Molecular dynamics simulation of solidification and devitrification in a one-component system, M. I. Mendelev. Modelling Simul. Mater. Sci. Eng. 20, 045014 (2012).

    Article  Google Scholar 

  15. Stratt, R. M. The instantaneous normal-modes of liquids. Acc. Chem. Res. 28, 201–207 (1995).

    Article  CAS  Google Scholar 

  16. Stillinger, F. H. & Weber, T. A. Hidden structure in liquids. Phys. Rev. A 25, 978–989 (1982).

    Article  CAS  Google Scholar 

  17. Jackson, K. A. The interface kinetics of crystal growth processes. Interface Sci. 10, 159–169 (2002).

    Article  Google Scholar 

  18. Lechner, W. & Dellago, C. Accurate determination of crystal structures based on averaged local bond order parameters. J. Chem. Phys. 129, 114707 (2008).

    Article  Google Scholar 

  19. Mickel, W., Kapfer, S. C., Schröder-Turk, G. E. & Mecke, K. Shortcomings of the bond orientational order parameters for the analysis of disordered particulate matter. J. Chem. Phys. 138, 044501 (2013).

    Article  Google Scholar 

  20. Press, W. H. et al. Numerical Recipes: The Art of Scientific Computing (Cambridge Univ., Cambridge, 1986).

    Google Scholar 

  21. Jacobsen, K. W., Norskov, J. K. & Puska, M. J. Interatomic interactions in the effective-medium theory. Phys. Rev. B 35, 7423–7442 (1987).

    Article  CAS  Google Scholar 

  22. Foiles, S. M., Baskes, M. I. & Daw, M. S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983–7991 (1986).

    Article  CAS  Google Scholar 

  23. Zhou, X. W., Johnson, R. A. & Wadley, H. N. G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B 69, 144113 (2004).

    Article  Google Scholar 

  24. Burke, E., Broughton, J. Q. & Gilmer, G. H. Crystallization of fcc (111) and (100) crystal‐melt interfaces: A comparison by molecular dynamics for the Lennard‐Jones system. J. Chem. Phys. 89, 1030–1041 (1988).

    Article  CAS  Google Scholar 

  25. Plimpton, S. J. Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge programing assistance from C. Tang. This work has been supported by a Discovery grant from the Australian Research Council.

Author information

Authors and Affiliations

Authors

Contributions

G.S. carried out the majority of calculations, designed and prepared all of the figures, contributed to the writing of the paper, and was involved in assessing the outcomes of the various computational approaches. J.X. carried out a number of preliminary calculations. P.H. conceived the project, designed the overall computational strategy, assessed the outcomes and wrote the paper.

Corresponding author

Correspondence to Peter Harrowell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Supplementary Figures 1–12 and Supplementary References 1–3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, G., Xu, J. & Harrowell, P. The mechanism of the ultrafast crystal growth of pure metals from their melts. Nature Mater 17, 881–886 (2018). https://doi.org/10.1038/s41563-018-0174-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0174-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing