Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Topological quantum properties of chiral crystals


Chiral crystals are materials with a lattice structure that has a well-defined handedness due to the lack of inversion, mirror or other roto-inversion symmetries. Although it has been shown that the presence of crystalline symmetries can protect topological band crossings, the topological electronic properties of chiral crystals remain largely uncharacterized. Here we show that Kramers–Weyl fermions are a universal topological electronic property of all non-magnetic chiral crystals with spin–orbit coupling and are guaranteed by structural chirality, lattice translation and time-reversal symmetry. Unlike conventional Weyl fermions, they appear at time-reversal-invariant momenta. We identify representative chiral materials in 33 of the 65 chiral space groups in which Kramers–Weyl fermions are relevant to the low-energy physics. We determine that all point-like nodal degeneracies in non-magnetic chiral crystals with relevant spin–orbit coupling carry non-trivial Chern numbers. Kramers–Weyl materials can exhibit a monopole-like electron spin texture and topologically non-trivial bulk Fermi surfaces over an unusually large energy window.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Structural chirality, topological chirality and Kramers–Weyl fermions.
Fig. 2: Band topology and Fermi arcs of Kramers–Weyl material candidates.
Fig. 3: Quantized circular photogalvanic current and topological spin–momentum locking.

Data availability

The data supporting the findings of this study are available within the paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Wigner, E. P. On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149–204 (1939).

    Article  Google Scholar 

  2. 2.

    Bradley, C. J. & Cracknell, A. P. The Mathematical Theory of Symmetry in Solids (Clarendon Press Oxford, Oxford, 1972).

    Google Scholar 

  3. 3.

    Flack, H. D. Chiral and achiral crystal structure. Helv. Chim. Acta 86, 905–921 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    Bogdanov, A. & Hubert, A. Thermodynamically stable magnetic vortex states in magnetic crystals. J. Magn. Mater. 138, 255–269 (1994).

    CAS  Article  Google Scholar 

  5. 5.

    Rikken, G. L. J. A., Fölling, J. & Wyder, P. Electrical magnetochiral anisotropy. Phys. Rev. Lett. 87, 236602 (2001).

    CAS  Article  Google Scholar 

  6. 6.

    Yoda, T., Yokoyama, T. & Murakami, S. Current-induced orbital and spin magnetizations in crystals with helical structure. Sci. Rep. 5, 12024 (2015).

    Article  Google Scholar 

  7. 7.

    Fasman, G. D. Circular Dichroism and the Conformational Analysis of Biomolecules (Springer, Berlin, 2013).

  8. 8.

    Hasan, M. Z., Xu, S.-Y. & Bian, G. Topological insulators, topological superconductors and Weyl fermion semimetals. Phys. Scr. T164, 014001 (2015).

    Article  Google Scholar 

  9. 9.

    Zheng, H. & Hasan, M. Z. Quasiparticle interference on type-I and type-II Weyl semimetal surfaces: a review. Adv. Phys. X 3, 146661 (2018).

    Google Scholar 

  10. 10.

    Yang, B. J. & Nagaosa, N. Classification of stable three-dimensional Dirac semimetals with nontrivial topology. Nat. Commun. 5, 4898 (2015).

    Article  Google Scholar 

  11. 11.

    Murakami, S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J. Phys. 9, 356 (2007).

    Article  Google Scholar 

  12. 12.

    Wan, X. et al. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  Google Scholar 

  13. 13.

    Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    Mañes, J. L. Existence of bulk chiral fermions and crystal symmetry. Phys. Rev. B 85, 155118 (2012).

    Article  Google Scholar 

  16. 16.

    Fang, C. et al. Multi-Weyl topological semimetals stabilized by point group symmetry. Phys. Rev. Lett. 107, 127205 (2011).

    Article  Google Scholar 

  17. 17.

    Kim, W., Wieder, B. J., Kane, C. L. & Rappe, A. M. Dirac line nodes in inversion-symmetric crystals. Phys. Rev. Lett. 115, 036806 (2015).

    Article  Google Scholar 

  18. 18.

    Watanabe, H. et al. Filling constraints for spin-orbit coupled insulators in symmorphic and nonsymmorphic crystals. Proc. Natl Acad. Sci. USA 112, 14551–14556 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Bradlyn, B. et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystal. Science 353, aaf5037 (2016).

    Article  Google Scholar 

  20. 20.

    Wieder, B. J. et al. Double Dirac semimetals in three dimensions. Phys. Rev. Lett. 116, 186402 (2016).

    Article  Google Scholar 

  21. 21.

    Po, H. C., Vishwanath, A. & Watanabe, H. Topological materials discovery using electron filling constraints. Nat. Phys. 14, 55–61 (2018).

    Article  Google Scholar 

  22. 22.

    Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Chang, G. et al. Unconventional chiral fermions and large topological Fermi arcs in RhSi. Phys. Rev. Lett. 119, 206401 (2017).

    Article  Google Scholar 

  24. 24.

    Tang, P., Zhou, Q. & Zhang, S.-C. Multiple types of topological fermions in transition metal silicides. Phys. Rev. Lett. 119, 206402 (2017).

    Article  Google Scholar 

  25. 25.

    Witczak-Krempa, W., Knap, M. & Abanin, D. Interacting Weyl semimetals: characterization via the topological Hamiltonian and its breakdown. Phys. Rev. Lett. 113, 136402 (2014).

    Article  Google Scholar 

  26. 26.

    Bernevig, B. A. Lecture on Weyl semimetals at the Topological Matter School, Donostia International Physics Center (Topological Matter School, 2016);;

  27. 27.

    Xiao, M. & Fan, S. Topologically charged nodal surface. Preprint at (2017).

  28. 28.

    Sharma, G. et al. Electronic structure, photovoltage, and photocatalytic hydrogen evolution with p-CuBi2O4 nanocrystals. J. Mater. Chem. A 4, 2936–2942 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    Di Sante, D. et al. Realizing double Dirac particles in the presence of electronic interactions. Phys. Rev. B. 96, 121106(R) (2017).

    Article  Google Scholar 

  30. 30.

    Inorganic Crystal Structure Database (FIZ Karlsruhe, 2014);

  31. 31.

    Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  33. 33.

    Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    Kourtis, S. Bulk spectroscopic measurement of the topological charge of Weyl nodes with resonant x-rays. Phys. Rev. B 94, 125132 (2016).

    Article  Google Scholar 

  35. 35.

    Itoh, S. Weyl Fermions and spin dynamics of metallic ferromagnet SrRuO3. Nat. Commun. 7, 11788 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    de Juan, F. et al. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2014).

    Article  Google Scholar 

  38. 38.

    Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    Chan, C.-K. & Lee, P. A. Emergence of bulk gap and metallic side walls in the zeroth Landau level in Dirac and Weyl semimetals. Phys. Rev. B 96, 195143 (2017).

    Article  Google Scholar 

  40. 40.

    Hu, J. et al. π Berry phase and Zeeman splitting of TaP probed by high field magnetotransport measurements. Sci. Rep. 6, 18674 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    Wang, Z. & Zhang, S.-C. Chiral anomaly, charge density waves, and axion strings from Weyl semimetals. Phys. Rev. B 87, 161107(R) (2013).

    Article  Google Scholar 

  42. 42.

    Sun, Y., Zhang, Y., Felser, C. & Yan, B. Giant intrinsic spin Hall effect in the TaAs family of Weyl semimetals. Phys. Rev. Lett. 117, 146403 (2016).

    Article  Google Scholar 

  43. 43.

    Shan, J. & Heinz, T. F. Ultrafast Dynamical Processes in Semiconductors (Springer, Berlin, 2004).

  44. 44.

    Zyuzin, A. A. et al. Weyl semimetal with broken time reversal and inversion symmetries. Phys. Rev. B 85, 165110 (2012).

    Article  Google Scholar 

  45. 45.

    Zhong, S., Moore, J. E. & Souza, I. Gyrotropic magnetic effect and the magnetic moment on the Fermi surface. Phys. Rev. Lett. 116, 077201 (2016).

    Article  Google Scholar 

  46. 46.

    Bardarson, J. H., Lu, Y.-M. & Moore, J. E. Superconductivity of doped Weyl semimetals: finite-momentum pairing and electronic analogues of the 3He-A phase. Phys. Rev. B 86, 214514 (2012).

    Article  Google Scholar 

  47. 47.

    Hosur, P. & Qi, X.-L. Time-reversal invariant topological superconductivity in doped Weyl semimetals. Phys. Rev. B 90, 045130 (2014).

    Article  Google Scholar 

  48. 48.

    Xu, S.-Y. et al. Momentum-space imaging of Cooper pairing in a half-Dirac-gas topological superconductor. Nat. Phys. 10, 943–950 (2014).

    CAS  Article  Google Scholar 

  49. 49.

    Kresse, G. & Furthmöller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Article  Google Scholar 

  50. 50.

    Blaha, P., Schwarz, K. & Madsen, G. K. H. et al. An Augmented Plane Wave plus Local Orbital Program for Calculating Crystal Properties. (Vienna University of Technology, Vienna, 2001).

    Google Scholar 

  51. 51.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Article  Google Scholar 

Download references


Work at Princeton was supported by the US Department of Energy under Basic Energy Sciences (grant no. DOE/BES DE-FG-02-05ER46200). M.Z.H. acknowledges Visiting Scientist support from the Lawrence Berkeley National Laboratory, and partial support for theoretical work from the Gordon and Betty Moore Foundation (grant no. GBMF4547/Hasan). The work at the National University of Singapore was supported by the National Research Foundation, Prime Minister’s Office, Singapore, under its NRF fellowship (NRF award no. NRF-NRFF2013-03). B.J.W. acknowledges support through a Simons Investigator grant from the Simons Foundation to C. L. Kane, through Nordita under ERC DM 321031, through grants from the Department of Energy (no. DE-SC0016239), the Simons Foundation (Simons Investigator grant no. ONR-N00014-14-1-0330), the Packard Foundation and the Schmidt Fund to B. A. Bernevig, and acknowledges the hospitality of the Donostia International Physics Center. F.S. and T.N. acknowledge support by the Swiss National Science Foundation (grant no. 200021–169061) and the ERC-StG-Neupert-757867-PARATOP, respectively. T.-R.C. was supported by the Ministry of Science and Technology under the MOST Young Scholar Fellowship: MOST Grant for the Columbus Program no. 107-2636-M-006-004-, National Cheng Kung University, Taiwan, and the National Center for Theoretical Sciences (NCTS), Taiwan. M.Z.H. acknowledges support from the Miller Institute of Basic Research in Science at the University of California at Berkeley in the form of a Visiting Miller Professorship during the early stages of this work. The authors thank C. L. Kane and R. Kamien for helpful discussions on chirality and thank B. Bradlyn, J. Cano, M. I. Aroyo and B. A. Bernevig for insightful discussions on group theory and symmetry.

Author information




All the authors contributed to the intellectual content of this work. By systematically studying the electronic structures of chiral crystals, the existence of Weyl points at TRIM points of chiral crystals was recognized by G.C. and S.-Y.X. in consultation with M.Z.H. B.J.W. proved that Weyl fermions at TRIM points (Kramers-Weyl fermions) are a generic feature of all chiral crystals, and thus that all point degeneracies in chiral crystals are topological. F.S. and T.N. proved the relationship between bulk symmetry eigenvalues and the chiral charge of Kramers–Weyl fermions. Spin–momentum locking was proposed by F.S. and T.N., and applied to models and materials by B.J.W., S.-Y.X and G.C. The materials search was done by G.C. and S.-Y.X. with help from all the authors. Tight-binding models were constructed by B.J.W., F.S. and T.N. The first-principles calculations were performed by G.C., S.-M.H., B.S., D.W.,T.-R.C. and H.L. The manuscript was written by G.C., B.J.W., F.S., T.N., S.-Y.X., H.L. and M.Z.H. with the help of D.S.S. and I.B. S.-Y.X., H.L. and M.Z.H. were responsible for the overall research direction, planning and integration among different research units.

Corresponding authors

Correspondence to Su-Yang Xu, Hsin Lin or M. Zahid Hasan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Tables 1–4, Supplementary Figures 1–12 and Supplementary References 1–32

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, G., Wieder, B.J., Schindler, F. et al. Topological quantum properties of chiral crystals. Nature Mater 17, 978–985 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing