Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fluid-enhanced surface diffusion controls intraparticle phase transformations


Phase transformations driven by compositional change require mass flux across a phase boundary. In some anisotropic solids, however, the phase boundary moves along a non-conductive crystallographic direction. One such material is LiXFePO4, an electrode for lithium-ion batteries. With poor bulk ionic transport along the direction of phase separation, it is unclear how lithium migrates during phase transformations. Here, we show that lithium migrates along the solid/liquid interface without leaving the particle, whereby charge carriers do not cross the double layer. X-ray diffraction and microscopy experiments as well as ab initio molecular dynamics simulations show that organic solvent and water molecules promote this surface ion diffusion, effectively rendering LiXFePO4 a three-dimensional lithium-ion conductor. Phase-field simulations capture the effects of surface diffusion on phase transformation. Lowering surface diffusivity is crucial towards supressing phase separation. This work establishes fluid-enhanced surface diffusion as a key dial for tuning phase transformation in anisotropic solids.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Crystallographic directions, phase separation and in-plane lithium migration in a Li0.5FePO4 platelet particle.
Fig. 2: Tracking solid solution Li0.5FePO4 electrodes during phase separation.
Fig. 3: Atomic geometries at the LiFePO4 (010)/EC and LiFePO4 (010)/H2O interfaces from ab initio MD simulations indicating Li-ion migration at the surface.
Fig. 4: The distribution of lithium in ionically connected particles shows that phase separation occurs primarily via surface diffusion.
Fig. 5: Origin of phase separation and solid solution from single-particle simulations.

Data availability

All experimental data within the article and its Supplementary Information will be made available upon reasonable request to the authors.


  1. 1.

    Grey, C. P. & Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 16, 45–56 (2017).

    Google Scholar 

  2. 2.

    Griessen, R., Strohfeldt, N. & Giessen, H. Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles. Nat. Mater. 15, 311–317 (2016).

    CAS  Google Scholar 

  3. 3.

    Trotochaud, L., Ranney, J. K., Williams, K. N. & Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 134, 17253–17261 (2012).

    CAS  Google Scholar 

  4. 4.

    Messerschmitt, F., Kubicek, M. & Rupp, J. L. M. How does moisture affect the physical property of memristance for anionic-electronic resistive switching memories? Adv. Funct. Mater. 25, 5117–5125 (2015).

    CAS  Google Scholar 

  5. 5.

    Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997).

    CAS  Google Scholar 

  6. 6.

    Delacourt, C., Poizot, P., Tarascon, J.-M. & Masquelier, C. The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1. Nat. Mater. 4, 254–260 (2005).

    CAS  Google Scholar 

  7. 7.

    Yamada, A. et al. Room-temperature miscibility gap in LixFePO4. Nat. Mater. 5, 357–360 (2006).

    CAS  Google Scholar 

  8. 8.

    Tang, M., Carter, W. C. & Chiang, Y.-M. Electrochemically driven phase transitions in insertion electrodes for lithium-Ion batteries: examples in lithium metal phosphate olivines. Annu. Rev. Mater. Res. 40, 501–529 (2010).

    CAS  Google Scholar 

  9. 9.

    Gibot, P. et al. Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nat. Mater. 7, 741–747 (2008).

    CAS  Google Scholar 

  10. 10.

    Morgan, D., Van der Ven, A. & Ceder, G. Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid State Lett. 7, A30–A32 (2004).

    CAS  Google Scholar 

  11. 11.

    Islam, M. S., Driscoll, D. J., Fisher, C. A. J. & Slater, P. R. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem. Mater. 17, 5085–5092 (2005).

    CAS  Google Scholar 

  12. 12.

    Delmas, C., Maccario, M., Croguennec, L., Le Cras, F. & Weill, F. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat. Mater. 7, 665–671 (2008).

    CAS  Google Scholar 

  13. 13.

    Dreyer, W. et al. The thermodynamic origin of hysteresis in insertion batteries. Nat. Mater. 9, 448–453 (2010).

    CAS  Google Scholar 

  14. 14.

    Cogswell, D. A. & Bazant, M. Z. Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. ACS Nano 6, 2215–2225 (2012).

    CAS  Google Scholar 

  15. 15.

    Malik, R., Zhou, F. & Ceder, G. Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nat. Mater. 10, 587–590 (2011).

    CAS  Google Scholar 

  16. 16.

    Bai, P., Cogswell, D. A. & Bazant, M. Z. Suppression of phase separation in LiFePO4 nanoparticles during battery discharge. Nano Lett. 11, 4890–4896 (2011).

    CAS  Google Scholar 

  17. 17.

    Orikasa, Y. et al. Direct observation of a metastable crystal phase of LixFePO4 under electrochemical phase transition. J. Am. Chem. Soc. 135, 5497–5500 (2013).

    CAS  Google Scholar 

  18. 18.

    Zhang, X. et al. Rate-induced solubility and suppression of the first-order phase transition in olivine LiFePO4. Nano Lett. 14, 2279–2285 (2014).

    CAS  Google Scholar 

  19. 19.

    Liu, H. et al. Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes. Science 344, 1252817 (2014).

    Google Scholar 

  20. 20.

    Zhang, X. et al. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling. Nat. Commun. 6, 8333 (2015).

    CAS  Google Scholar 

  21. 21.

    Lim, J. et al. Origin and hysteresis of lithium compositoinal spatiodynamics within battery primary particles. Science 353, 566–571 (2016).

    CAS  Google Scholar 

  22. 22.

    Chen, G., Song, X. & Richardson, T. J. Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem. Solid State Lett. 9, A295–A298 (2006).

    CAS  Google Scholar 

  23. 23.

    Yu, Y.-S. et al. Dependence on crystal size of the nanoscale chemical phase distribution and fracture in LixFePO4. Nano Lett. 15, 4282–4288 (2015).

    CAS  Google Scholar 

  24. 24.

    Nishimura, S. et al. Experimental visualization of lithium diffusion in LixFePO4. Nat. Mater. 7, 707–711 (2008).

    CAS  Google Scholar 

  25. 25.

    Malik, R., Burch, D., Bazant, M. & Ceder, G. Particle size dependence of the ionic diffusivity. Nano Lett. 10, 4123–4127 (2010).

    CAS  Google Scholar 

  26. 26.

    Amin, R., Maier, J., Balaya, P., Chen, D. P. & Lin, C. T. Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone technique. Solid State Ionics 179, 1683–1687 (2008).

    CAS  Google Scholar 

  27. 27.

    Tealdi, C., Spreafico, C. & Mustarelli, P. Lithium diffusion in Li1–xFePO4: the effect of cationic disorder. J. Mater. Chem. 22, 24870–24876 (2012).

    CAS  Google Scholar 

  28. 28.

    Hong, L. et al. Two-dimensional lithium diffusion behavior and probable hybrid phase transformation kinetics in olivine lithium iron phosphate. Nat. Commun. 8, 114 (2017).

    Google Scholar 

  29. 29.

    Dathar, G. K. P., Sheppard, D., Stevenson, K. J. & Henkelman, G. Calculations of Li-ion diffusion in olivine phosphates. Chem. Mater. 23, 4032–4037 (2011).

    CAS  Google Scholar 

  30. 30.

    Bazant, M. Z. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. Acc. Chem. Res. 46, 1144–1160 (2013).

    CAS  Google Scholar 

  31. 31.

    Marom, R., Haik, O., Aurbach, D. & Halalay, I. C. Revisiting LiClO4 as an electrolyte for rechargeable lithium-Ion batteries. J. Electrochem. Soc. 157, A972 (2010).

    CAS  Google Scholar 

  32. 32.

    Li, Y. et al. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. Nat. Mater. 13, 1149–1156 (2014).

    CAS  Google Scholar 

  33. 33.

    Ferguson, T. R. & Bazant, M. Z. Nonequilibrium thermodynamics of porous electrodes. J. Electrochem. Soc. 159, A1967–A1985 (2012).

    CAS  Google Scholar 

  34. 34.

    Koyama, Y. et al. Hidden two-step phase transition and competing reaction pathways in LiFePO4. Chem. Mater. 29, 2855–2863 (2017).

    CAS  Google Scholar 

  35. 35.

    Benedek, R., Thackeray, M. M. & Van De Walle, A. Free energy for protonation reaction in lithium-ion battery cathode materials. Chem. Mater. 20, 5485–5490 (2008).

    CAS  Google Scholar 

  36. 36.

    Luo, J.-Y., Cui, W.-J., He, P. & Xia, Y.-Y. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760–765 (2010).

    Google Scholar 

  37. 37.

    Zaghib, K. et al. Aging of LiFePO4 upon exposure to H2O. J. Power Sources 185, 698–710 (2008).

    CAS  Google Scholar 

  38. 38.

    Cahn, J. W. On spinodal decomposition. Acta Metall. 9, 795–801 (1961).

    CAS  Google Scholar 

  39. 39.

    Fisher, C. A. J. & Islam, M. S. Surface structures and crystal morphologies of LiFePO4: relevance to electrochemical behaviour. J. Mater. Chem. 18, 1209–1215 (2008).

    CAS  Google Scholar 

  40. 40.

    Zaghib, K., Mauger, A., Gendron, F. & Julien, C. M. Surface effects on the physical and electrochemical properties of thin LiFePO4 particles. Chem. Mater. 20, 462–469 (2008).

    CAS  Google Scholar 

  41. 41.

    Rho, Y., Nazar, L. F., Perry, L. & Ryan, D. Surface chemistry of LiFePO4 studied by Mössbauer and X-ray photoelectron spectroscopy and its effect on electrochemical properties. J. Electrochem. Soc. 154, A283–A289 (2007).

    CAS  Google Scholar 

  42. 42.

    Wagemaker, M., Mulder, F. M. & Van Der Ven, A. The role of surface and interface energy on phase stability of nanosized insertion compounds. Adv. Mater. 21, 2703–2709 (2009).

    CAS  Google Scholar 

  43. 43.

    Cogswell, D. A. & Bazant, M. Z. Theory of coherent nucleation in phase-separating nanoparticles. Nano Lett. 13, 3036–3041 (2013).

    CAS  Google Scholar 

  44. 44.

    Ferguson, T. R. & Bazant, M. Z. Phase transformation dynamics in porous battery electrodes. Electrochim. Acta 146, 89–97 (2014).

    CAS  Google Scholar 

  45. 45.

    Bazant, M. Z. Thermodynamic stability of driven open systems and control of phase separation by electroautocatalysis. Faraday Discuss. 199, 423–463 (2017).

    CAS  Google Scholar 

  46. 46.

    Woodford, W. H., Carter, W. C. & Chiang, Y.-M. Design criteria for electrochemical shock resistant battery electrodes. Energy Environ. Sci. 5, 8014–8024 (2012).

    CAS  Google Scholar 

  47. 47.

    Katsman, A., Beregovsky, M. & Yaish, Y. E. Formation and evolution of nickel silicide in silicon nanowires. IEEE Trans. Electron Devices 61, 3363–3371 (2014).

    CAS  Google Scholar 

  48. 48.

    Wang, H., Yuan, H., Hong, S. S., Li, Y. & Cui, Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 44, 2664–2680 (2014).

    Google Scholar 

  49. 49.

    Anasori, B., Lukatskaya, M. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

    CAS  Google Scholar 

  50. 50.

    Tao, X. et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 7, 11203 (2016).

    CAS  Google Scholar 

  51. 51.

    Nelson Weker, J., Li, Y., Shanmugam, R., Lai, W. & Chueh, W. C. Tracking non-uniform mesoscale transport in LiFePO4 agglomerates during electrochemical cycling. ChemElectroChem 2, 1576–1581 (2015).

    CAS  Google Scholar 

  52. 52.

    Islam, M. S. & Fisher, C. A. J. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 43, 185–204 (2014).

    CAS  Google Scholar 

  53. 53.

    Ceder, G. Opportunities and challenges for first-principles materials design and applications to Li battery materials. MRS Bull. 35, 693–702 (2010).

    CAS  Google Scholar 

  54. 54.

    Meng, Y. S. & Dompablo, M. E. A. Computational research of cathode materials for lithium-ion batteries. Acc. Chem. Res. 46, 1171–1180 (2013).

    CAS  Google Scholar 

  55. 55.

    Kresse, G. & Furthmu, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  56. 56.

    Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Google Scholar 

Download references


This experimental work at Stanford and SLAC was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under contract DE-AC02-76SF00515. Phase-field theoretical work at MIT and Stanford was supported by the Toyota Research Institute through D3BATT: Center for Data-Driven Design of Li-Ion Batteries. The Advanced Light Source and the Stanford Synchrotron Radiation Lightsource are supported by the DOE Office of Basic Energy Sciences under contracts DE-AC02-05CH11231 and DE-AC02-76SF00515. M.S.I. and H.C. acknowledge support from the EPSRC (grant EP/K016288) and the Archer HPC facilities through the Materials Chemistry Consortium (EP/L000202). Y.L. and P.M.A. were supported by the NSF Graduate Research Fellowship under grant DGE-114747. K.L. was supported by the Kwanjeong Education Foundation Fellowship. M.Z.B. was supported by the Global Climate and Energy Project at Stanford University and the DOE Office of Basic Energy Sciences through the SUNCAT Center for Interface Science and Catalysis. Part of this work was conducted the Stanford Nano Shared Facilities. We thank W. D. Nix (Stanford) for insightful discussions on metallurgy and mechanical properties and R. B. Smith (MIT) for assistance with the phase-field model. We also thank A. L. D. Kilcoyne (Berkeley) and D. Shaprio (Berkeley) for assistance with synchrotron measurements.

Author information




Y.L. conceived and designed the project, analysed the experimental data and performed the phase-field simulations. H.C. and M.S.I. conducted the molecular dynamics simulations. Y.L., K.L. and J.H. conducted diffraction. Y.L., J.L., P.M.A., N.J., W.E.G. and Y.S.Y. collected the X-ray microscopy images. S.C.L. performed transmission electron microscopy. D.F., Y.L. and M.Z.B. designed and executed the linear stability analysis. H.D.D., J.M. and M.G. quantified the resistance increase during relaxation. M.S.I. supervised the molecular dynamics simulations. M.Z.B. supervised the phase-field simulations and linear stability analysis. W.C.C. supervised the experimental components of the work. All authors contributed to writing the text.

Corresponding authors

Correspondence to M. Saiful Islam or Martin Z. Bazant or William C. Chueh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–17, Supplementary Table 1, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chen, H., Lim, K. et al. Fluid-enhanced surface diffusion controls intraparticle phase transformations. Nature Mater 17, 915–922 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing