Efficient electrical detection of mid-infrared graphene plasmons at room temperature

Abstract

Optical excitation and subsequent decay of graphene plasmons can produce a significant increase in charge-carrier temperature. An efficient method to convert this temperature elevation into electrical signals can enable important mid-infrared applications. However, the modest thermoelectric coefficient and weak temperature dependence of carrier transport in graphene hinder this goal. Here, we demonstrate mid-infrared graphene detectors consisting of arrays of plasmonic resonators interconnected by quasi-one-dimensional nanoribbons. Localized barriers associated with disorder in the nanoribbons produce a dramatic temperature dependence of carrier transport, thus enabling the electrical detection of plasmon decay in the nearby graphene resonators. Our device has a subwavelength footprint of 5 × 5 μm2 and operates at 12.2 μm with an external responsivity of 16 mA W–1 and a low noise-equivalent power of 1.3 nW Hz–1/2 at room temperature. It is fabricated using large-scale graphene and possesses a simple two-terminal geometry, representing an essential step towards the realization of an on-chip graphene mid-infrared detector array.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Device design and operation principle.
Fig. 2: Temperature dependence of carrier transport and photocurrent generation.
Fig. 3: Device scalability and effect of Joule electron heating on the responsivity.
Fig. 4: Frequency response and noise characteristics.

Change history

  • 10 September 2018

    In the version of this Article originally published, the units of the right-hand y axis of Fig. 2a were incorrectly labelled as mS; they should have been µS. Also, the x-axis tick marks of Fig. 3b should have been aligned with Fig. 3a,c. These have now been corrected.

References

  1. 1.

    Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, New York, NY, 2007).

  2. 2.

    Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotech. 10, 25–34 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Brown, A. M., Sundararaman, R., Narang, P., Goddard, W. A. III & Atwater, H. A. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano 10, 957–966 (2015).

    Article  CAS  Google Scholar 

  5. 5.

    Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702–704 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    Schuck, P. J. Nanoimaging: hot electrons go through the barrier. Nat. Nanotech. 8, 799–800 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    Wunsch, B., Stauber, T., Sols, F. & Guinea, F. Dynamical polarization of graphene at finite doping. New J. Phys. 8, 318 (2006).

    Article  CAS  Google Scholar 

  8. 8.

    Hwang, E. & Sarma, S. D. Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 75, 205418 (2007).

    Article  CAS  Google Scholar 

  9. 9.

    García de Abajo, F. J. Graphene plasmonics: challenges and opportunities. ACS Photon 1, 135–152 (2014).

    Article  CAS  Google Scholar 

  10. 10.

    Yu, R. & García de Abajo, F. J. Electrical detection of single graphene plasmons. ACS Nano 10, 8045–8053 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotech. 6, 630–634 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photon. 7, 394–399 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    Grigorenko, A., Polini, M. & Novoselov, K. Graphene plasmonics. Nat. Photon. 6, 749–758 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Ni, G. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Gierz, I. et al. Snapshots of non-equilibrium Dirac carrier distributions in graphene. Nat. Mater. 12, 1119–1124 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    Zuev, Y. M., Chang, W. & Kim, P. Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 096807 (2009).

    Article  CAS  Google Scholar 

  23. 23.

    Lundeberg, M. B. et al. Thermoelectric detection and imaging of propagating graphene plasmons. Nat. Mater. 16, 204–207 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Gabor, N. M. et al. Hot carrier–assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    Heo, J. et al. Nonmonotonic temperature dependent transport in graphene grown by chemical vapor deposition. Phys. Rev. B 84, 035421 (2011).

    Article  CAS  Google Scholar 

  27. 27.

    Yan, J. et al. Dual-gated bilayer graphene hot-electron bolometer. Nat. Nanotech. 7, 472–478 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    Freitag, M. et al. Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nat. Commun. 4, 1951 (2013).

    Article  CAS  Google Scholar 

  29. 29.

    Han, M. Y., Özyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  CAS  Google Scholar 

  30. 30.

    Han, M. Y., Brant, J. C. & Kim, P. Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 104, 056801 (2010).

    Article  CAS  Google Scholar 

  31. 31.

    Gallagher, P., Todd, K. & Goldhaber-Gordon, D. Disorder-induced gap behavior in graphene nanoribbons. Phys. Rev. B 81, 115409 (2010).

    Article  CAS  Google Scholar 

  32. 32.

    Stampfer, C. et al. Energy gaps in etched graphene nanoribbons. Phys. Rev. Lett. 102, 056403 (2009).

    CAS  Article  Google Scholar 

  33. 33.

    Chen, Z., Lin, Y.-M., Rooks, M. J. & Avouris, P. Graphene nano-ribbon electronics. Physica E 40, 228–232 (2007).

    CAS  Article  Google Scholar 

  34. 34.

    Rodrigo, D. et al. Double-layer graphene for enhanced tunable infrared plasmonics. Light. Sci. Appl. 6, e16277 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    Yan, H. et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotech. 7, 330–334 (2012).

    CAS  Article  Google Scholar 

  36. 36.

    Robertson, J. Diamond-like amorphous carbon. Mater. Sci. Eng. R Rep. 37, 129–281 (2002).

    Article  Google Scholar 

  37. 37.

    Shamsa, M. et al. Thermal conductivity of diamond-like carbon films. Appl. Phys. Lett. 89, 161921 (2006).

    Article  CAS  Google Scholar 

  38. 38.

    Deng, B. et al. Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures. ACS Nano 10, 11172–11178 (2016).

    CAS  Article  Google Scholar 

  39. 39.

    Song, J. C., Reizer, M. Y. & Levitov, L. S. Disorder-assisted electron-phonon scattering and cooling pathways in graphene. Phys. Rev. Lett. 109, 106602 (2012).

    Article  CAS  Google Scholar 

  40. 40.

    McKitterick, C. B., Prober, D. E. & Rooks, M. J. Electron-phonon cooling in large monolayer graphene devices. Phys. Rev. B 93, 075410 (2016).

    Article  CAS  Google Scholar 

  41. 41.

    Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene. Science 351, 1058–1061 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    Betz, A. et al. Supercollision cooling in undoped graphene. Nat. Phys. 9, 109–112 (2013).

    CAS  Article  Google Scholar 

  43. 43.

    Graham, M. W., Shi, S.-F., Ralph, D. C., Park, J. & McEuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nat. Phys. 9, 103–108 (2013).

    CAS  Article  Google Scholar 

  44. 44.

    Pop, E., Varshney, V. & Roy, A. K. Thermal properties of graphene: fundamentals and applications. MRS Bull. 37, 1273–1281 (2012).

    CAS  Article  Google Scholar 

  45. 45.

    Yan, H. et al. Infrared spectroscopy of wafer-scale graphene. ACS Nano 5, 9854–9860 (2011).

    CAS  Article  Google Scholar 

  46. 46.

    Efetov, D. K. et al. Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out. Nat. Nanotech. https://doi.org/10.1038/s41565-018-0169-0 (2018).

    Article  Google Scholar 

  47. 47.

    Balandin, A. A. Low-frequency 1/f noise in graphene devices. Nat. Nanotech. 8, 549–555 (2013).

    CAS  Article  Google Scholar 

  48. 48.

    Khorasaninejad, M., Chen, W. T., Oh, J. & Capasso, F. Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy. Nano Lett. 16, 3732–3737 (2016).

    CAS  Article  Google Scholar 

  49. 49.

    Rogalski, A., Martyniuk, P. & Kopytko, M. Challenges of small-pixel infrared detectors: a review. Rep. Prog. Phys. 79, 046501 (2016).

    CAS  Article  Google Scholar 

  50. 50.

    Medina, A., Gayá, F. & Del Pozo, F. Compact laser radar and three-dimensional camera. J. Opt. Soc. Am. A 23, 800–805 (2006).

    Article  Google Scholar 

  51. 51.

    Korneev, A., Korneeva, Y., Florya, I., Voronov, B. & Goltsman, G. NbN nanowire superconducting single-photon detector for mid-infrared. Phys. Procedia 36, 72–76 (2012).

    CAS  Article  Google Scholar 

  52. 52.

    Laurent, L., Yon, J.-J., Moulet, J.-S., Roukes, M. & Duraffourg, L. 12-μm-pitch electromechanical resonator for thermal sensing. Phys. Rev. Appl. 9, 024016 (2018).

    CAS  Article  Google Scholar 

  53. 53.

    Ilic, O. et al. Near-field thermal radiation transfer controlled by plasmons in graphene. Phys. Rev. B 85, 155422 (2012).

    Article  CAS  Google Scholar 

  54. 54.

    Yu, R., Manjavacas, A. & García de Abajo, F. J. Ultrafast radiative heat transfer. Nat. Commun. 8, 2 (2017).

    Article  CAS  Google Scholar 

  55. 55.

    Talghader, J. J., Gawarikar, A. S. & Shea, R. P. Spectral selectivity in infrared thermal detection. Light Sci. Appl. 1, e24 (2012).

    Article  CAS  Google Scholar 

  56. 56.

    McManamon, P. Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology. Opt. Eng. 51, 060901 (2012).

    Article  Google Scholar 

  57. 57.

    Capasso, F. et al. Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission. IEEE J. Quantum Electron. 38, 511–532 (2002).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Science Foundation (CAREER Award ECCS-1552461) for financial support. We also thank the Office of Naval Research (N00014-14-1-0565) for partial support in the photocurrent measurement set-up. We thank X. Li and J. Kong for providing some of the monolayer graphene on copper for this project and IBM Research for providing DLC on silicon substrates. F.J.G.d.A. and R.Y. acknowledge support from the Spanish MINECO (MAT2017-88492-R and SEV2015-0522), the European Commission (Graphene Flagship 696656) and Fundació Privada Cellex.

Author information

Affiliations

Authors

Contributions

Q.G. and F.X. conceived the project. Q.G. fabricated the devices and performed the measurements with help from C.L. S.Y. and B.D. Theoretical modelling and data analysis were carried out by R.Y. under the supervision of F.J.G.d.A. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to F. Javier García de Abajo or Fengnian Xia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–7, Supplementary Figures 1–9, Supplementary References 1–29

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Yu, R., Li, C. et al. Efficient electrical detection of mid-infrared graphene plasmons at room temperature. Nature Mater 17, 986–992 (2018). https://doi.org/10.1038/s41563-018-0157-7

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing