Letter | Published:

Coupling two order parameters in a quantum gas

Nature Materialsvolume 17pages686690 (2018) | Download Citation

Abstract

Controlling matter to simultaneously support coupled properties is of fundamental and technological importance1 (for example, in multiferroics2,3,4,5 or high-temperature superconductors6,7,8,9). However, determining the microscopic mechanisms responsible for the simultaneous presence of different orders is difficult, making it hard to predict material phenomenology10,11 or modify properties12,13,14,15,16. Here, using a quantum gas to engineer an adjustable interaction at the microscopic level, we demonstrate scenarios of competition, coexistence and mutual enhancement of two orders. For the enhancement scenario, the presence of one order lowers the critical point of the other. Our system is realized by a Bose–Einstein condensate that can undergo self-organization phase transitions in two optical resonators17, resulting in two distinct crystalline density orders. We characterize the coupling between these orders by measuring the composite order parameter and the elementary excitations and explain our results with a mean-field free-energy model derived from a microscopic Hamiltonian. Our system is ideally suited to explore quantum tricritical points18 and can be extended to study the interplay of spin and density orders19 as a function of temperature20.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Spaldin, N. A., Cheong, S.-W. & Ramesh, R. Multiferroics: Past, present, and future. Phys. Today 10, 38–43 (October, 2010).

  2. 2.

    Cheong, A.-W. & Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007).

  3. 3.

    Hur, N. et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004).

  4. 4.

    Lawes, G. et al. Magnetically driven ferroelectric order in Ni3V2O8. Phys. Rev. Lett. 95, 087205 (2005).

  5. 5.

    Heyer, O. et al. A new multiferroic material: MnWO4. J. Phys. Condens. Matter 18, L471–L475 (2006).

  6. 6.

    Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995).

  7. 7.

    Carbotte, J. P., Schachinger, E. & Basov, D. N. Coupling strength of charge carriers to spin fluctuations in high-temperature superconductors. Nature 401, 354–356 (1999).

  8. 8.

    Daou, R. et al. Broken rotational symmetry in the pseudogap phase of a high-T c superconductor. Nature 463, 519–522 (2010).

  9. 9.

    Hinkov, V. et al. Electronic liquid crystal state in the high-temperature superconductor YBa2Cu3O6.45. Science 319, 597–600 (2008).

  10. 10.

    Demler, E., Hanke, W. & Zhang, S.-C. SO(5) theory of antiferromagnetism and superconductivity. Rev. Mod. Phys. 76, 909–974 (2004).

  11. 11.

    Artyukhin, S., Delaney, K. T., Spaldin, N. A. & Mostovoy, M. Landau theory of topological defects in multiferroic hexagonal manganites. Nat. Mater. 13, 42–49 (2014).

  12. 12.

    Norman, M. R., Randeria, M., Ding, H. & Campuzano, J. C. Phenomenology of the low-energy spectral function in high-T c superconductors. Phys. Rev. B 57, R11093(R) (1998).

  13. 13.

    Hill, N. A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000).

  14. 14.

    Aschauer, U. & Spaldin, N. A. Competition and cooperation between antiferrodistortive and ferroelectric instabilities in the model perovskite SrTiO3. J. Phys. Condens. Matter 26, 122203 (2014).

  15. 15.

    Tsvelik, A. M. & Chubukov, A. V. Phenomenological theory of the underdoped phase of a high-T c superconductor. Phys. Rev. Lett. 98, 237001 (2007).

  16. 16.

    Nyéki, J. et al. Intertwined superfluid and density wave order in two-dimensional 4He. Nat. Phys. 13, 455–459 (2017).

  17. 17.

    Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543, 87–90 (2016).

  18. 18.

    Friedemann, S. et al. Quantum tricritical points in NbFe2. Nat. Phys. 14, 62–67 (2017).

  19. 19.

    Mivehvar, F., Piazza, F. & Ritsch, H. Disorder-driven density and spin self-ordering of a Bose–Einstein condensate in a cavity. Phys. Rev. Lett. 119, 063602 (2017).

  20. 20.

    Piazza, F., Strack, P. & Zwerger, W. Bose–Einstein condensation versus Dicke–Hepp–Lieb transition in an optical cavity. Ann. Phys. (NY) 339, 135–159 (2013).

  21. 21.

    Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, Cambridge, 1999).

  22. 22.

    Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: Theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457–482 (2015).

  23. 23.

    Baumann, K., Guerlin, C., Brennecke, F. & Esslinger, T. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 464, 1301–1306 (2010).

  24. 24.

    Baumann, K., Mottl, R., Brennecke, F. & Esslinger, T. Exploring symmetry breaking at the Dicke quantum phase transition. Phys. Rev. Lett. 107, 140402 (2011).

  25. 25.

    Ketterle, W., Durfee, D. S. & Stamper-Kurn, D. M. Making, Probing and Understanding BEC Course CXL (eds Inguscio, M. et al.) 67 (IOS, Amsterdam, 1999).

  26. 26.

    Léonard, J., Morales, A., Zupancic, P., Donner, T. & Esslinger, T. Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum gas. Science 358, 1415–1418 (2017).

  27. 27.

    Lang, J., Piazza, F. & Zwerger, W. Collective excitations and supersolid behavior of bosonic atoms inside two crossed optical cavities. New J. Phys. 19, 123027 (2017).

  28. 28.

    Bornholdt, S., Tetradis, N. & Wetterich, C. Coleman–Weinberg phase transition in two–scalar models. Phys. Rev. B 348, 89–99 (1995).

  29. 29.

    Gopalakrishnan, S., Shchadilova, Y. E. & Demler, E. Intertwined and vestigial order with ultracold atoms in multiple cavity modes. Phys. Rev. A 96, 063828 (2017).

  30. 30.

    Awadhesh, N., Balatsky, A. V. & Spaldin, N. A. Multiferroic quantum criticality. Preprint at https://arxiv.org/abs/1711.07989 (2017).

Download references

Acknowledgements

We thank E. Demler, S. Gopalakrishnan, A. Narayan, Y. E. Shchadilova and N. Spaldin for insightful discussions. We thank D. Dreon for careful reading of the manuscript and X. Li for experimental assistance. We acknowledge funding for the SBFI Horizon2020 project QUIC (grant agreement 641122) and the Horizon2020 European Training Network ColOpt (grant agreement 721465), and SNF support for the NCCR QSIT and the DACH project ‘Quantum Crystals of Matter and Light’.

Author information

Affiliations

  1. Institute for Quantum Electronics, ETH Zurich, Zurich, Switzerland

    • Andrea Morales
    • , Philip Zupancic
    • , Julian Léonard
    • , Tilman Esslinger
    •  & Tobias Donner
  2. Department of Physics, Harvard University, Cambridge, MA, USA

    • Julian Léonard

Authors

  1. Search for Andrea Morales in:

  2. Search for Philip Zupancic in:

  3. Search for Julian Léonard in:

  4. Search for Tilman Esslinger in:

  5. Search for Tobias Donner in:

Contributions

All authors contributed extensively to the work presented here.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Tilman Esslinger.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–3

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41563-018-0118-1