Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency


Tandem devices combining perovskite and silicon solar cells are promising candidates to achieve power conversion efficiencies above 30% at reasonable costs. State-of-the-art monolithic two-terminal perovskite/silicon tandem devices have so far featured silicon bottom cells that are polished on their front side to be compatible with the perovskite fabrication process. This concession leads to higher potential production costs, higher reflection losses and non-ideal light trapping. To tackle this issue, we developed a top cell deposition process that achieves the conformal growth of multiple compounds with controlled optoelectronic properties directly on the micrometre-sized pyramids of textured monocrystalline silicon. Tandem devices featuring a silicon heterojunction cell and a nanocrystalline silicon recombination junction demonstrate a certified steady-state efficiency of 25.2%. Our optical design yields a current density of 19.5 mA cm2 thanks to the silicon pyramidal texture and suggests a path for the realization of 30% monolithic perovskite/silicon tandem devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Cell design and microstructure of the perovskite top cell on a textured SHJ bottom cell.
Fig. 2: Comparison between different recombination junctions.
Fig. 3: Improved optics with a fully textured architecture.
Fig. 4: Certified performance of the fully textured perovskite/silicon tandem cell.
Fig. 5: Device stability.


  1. 1.

    Battaglia, C., Cuevas, A. & De Wolf, S. High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ. Sci. 9, 1552–1576 (2016).

    Article  Google Scholar 

  2. 2.

    Richter, A., Hermle, M. & Glunz, S. Crystalline silicon solar cells reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 3, 1184–1191 (2013).

    Article  Google Scholar 

  3. 3.

    NREL Efficiency Chart (NREL, 2017).

  4. 4.

    Yoshikawa, K. et al. Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology. Sol. Energy Mater. Sol. Cells 173, 37–42 (2017).

    Article  Google Scholar 

  5. 5.

    Essig, S. et al. Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nat. Energy 2, 17144 (2017).

    Article  Google Scholar 

  6. 6.

    Werner, J., Niesen, B. & Ballif, C. Perovskite/silicon tandem solar cells: Marriage of convenience or true love story? - An overview. Adv. Mater. Interfaces 5, 1700731 (2018).

    Article  Google Scholar 

  7. 7.

    Fu, F. et al. High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration. Nat. Energy 2, 16190 (2016).

    Article  Google Scholar 

  8. 8.

    Yang, W. S. et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356, 1376–1379 2017).

    Article  Google Scholar 

  9. 9.

    De Wolf, S. et al. Organometallic halide perovskites: Sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

    Article  Google Scholar 

  10. 10.

    Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 2014).

    Article  Google Scholar 

  11. 11.

    Grant, D. T., Catchpole, K. R., Weber, K. J. & White, T. P.. Design guidelines for perovskite/silicon 2-terminal tandem solar cells: an optical study. Opt. Express 24, A1454–A1470 2016).

    Article  Google Scholar 

  12. 12.

    Bush, K. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017).

    Article  Google Scholar 

  13. 13.

    Ramírez Quiroz, C. O. et al. Balancing electrical and optical losses for efficient 4-terminal Si–perovskite solar cells with solution processed percolation electrodes. J. Mater. Chem. A 6, 3583–3592 (2018).

    Article  Google Scholar 

  14. 14.

    Werner, J. et al. Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells. ACS Energy Lett. 1, 474–480 (2016).

    Article  Google Scholar 

  15. 15.

    Albrecht, S. et al. Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ. Sci. 9, 81–88 (2016).

    Article  Google Scholar 

  16. 16.

    Taguchi, M., Terakawa, A., Maruyama, E. & Tanaka, M. Obtaining a higher V oc in HIT cells. Prog. Photovolt. Res. Appl. 13, 481–488 (2005).

    Article  Google Scholar 

  17. 17.

    Holman, Z. C., Descoeudres, A., De Wolf, S. & Ballif, C. Record infrared internal quantum efficiency in silicon heterojunction solar cells with dielectric/metal rear reflectors. IEEE J. Photovolt. 3, 1243–1249 (2013).

    Article  Google Scholar 

  18. 18.

    Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  Google Scholar 

  19. 19.

    Santbergen, R. et al. Minimizing optical losses in monolithic perovskite/c-Si tandem solar cells with a flat top cell. Opt. Express 24, A1288–A1299 2016).

    Article  Google Scholar 

  20. 20.

    Schneider, B. W. et al. Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells. Opt. Express 22, A1422–A1430 (2014).

    Article  Google Scholar 

  21. 21.

    Longo, G. et al. Fully vacuum-processed wide band gap mixed-halide perovskite solar cells. ACS Energy Lett. 3, 214–219 (2018).

    Article  Google Scholar 

  22. 22.

    Ioakeimidis, A., Christodoulou, C., Lux-Steiner, M. & Fostiropoulos, K. Effect of PbI2 deposition rate on two-step PVD/CVD all-vacuum prepared perovskite. J. Solid State Chem. 244, 20–24 (2016).

    Article  Google Scholar 

  23. 23.

    Leyden, M. R., Jiang, Y. & Qi, Y. Chemical vapor deposition grown formamidinium perovskite solar modules with high steady state power and thermal stability. J. Mater. Chem. A 4, 13125–13132 (2016).

    Article  Google Scholar 

  24. 24.

    Werner, J. et al. Efficient monolithic perovskite/silicon tandem solar cell with cell area > 1 cm2. J. Phys. Chem. Lett. 7, 161–166 (2016).

    Article  Google Scholar 

  25. 25.

    Werner, J. et al. Complex refractive indices of cesium-formamidinium-based mixed halide perovskites with optical bandgaps from 1.5 to 1.8 eV. ACS Energy Lett. 3, 742–747 (2018).

    Article  Google Scholar 

  26. 26.

    Sahli, F. et al. Improved optics in monolithic perovskite/silicon tandem solar cells with a nanocrystalline silicon recombination junction. Adv. Energy Mater. 8, 1701609 (2017).

    Article  Google Scholar 

  27. 27.

    Tomasi, A. et al. Simple processing of back-contacted silicon heterojunction solar cells using selective-area crystalline growth. Nat. Energy 2, 17062 (2017).

    Article  Google Scholar 

  28. 28.

    Wu, Y. et al. Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency. Energy Environ. Sci. 10, 2472–2479 (2017).

    Article  Google Scholar 

  29. 29.

    de Wolf, S., Descoeudres, A., Holman, Z. C. & Ballif, C. High-efficiency silicon heterojunction solar cells: A review. Green 2, 7–24 (2012).

    Google Scholar 

  30. 30.

    Morales-Masis, M., Martin de Nicolas, S., Holovský, J., De Wolf, S. & Ballif, C. Low-temperature high-mobility amorphous IZO for silicon heterojunction solar cells. IEEE J. Photovolt. 5, 1340–1347 (2015).

    Article  Google Scholar 

  31. 31.

    Werner, J. et al. Sputtered rear electrode with broadband transparency for perovskite solar cells. Sol. Energy Mater. Sol. Cells 141, 407–413 (2015).

    Article  Google Scholar 

  32. 32.

    De Wolf, S. & Kondo, M. Nature of doped a-Si:H/c-Si interface recombination. J. Appl. Phys. 105, 103707 (2009).

    Article  Google Scholar 

  33. 33.

    Buehlmann, P. et al. In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells. Appl. Phys. Lett. 91, 143505 (2007).

    Article  Google Scholar 

  34. 34.

    Unger, E. L. et al. Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 7, 3690–3698 (2014).

    Article  Google Scholar 

  35. 35.

    Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

    Article  Google Scholar 

  36. 36.

    Jeangros, Q. et al. In situ TEM analysis of organic–inorganic metal-halide perovskite solar cells under electrical bias. Nano Lett. 16, 7013–7018 (2016).

    Article  Google Scholar 

  37. 37.

    Li, C. et al. Iodine migration and its effect on hysteresis in perovskite solar cells. Adv. Mater. 28, 2446–2454 (2016).

    Article  Google Scholar 

  38. 38.

    Levine, I. et al. Interface-dependent ion migration/accumulation controls hysteresis in MAPbI3 solar cells. J. Phys. Chem. C. 120, 16399–16411 (2016).

    Article  Google Scholar 

  39. 39.

    Descoeudres, A. et al. Low-temperature processes for passivation and metallization of high-efficiency crystalline silicon solar cells. Sol. Energy https://doi.org/10.1016/j.solener.2018.01.074 (2018).

  40. 40.

    Correa-Baena, J.-P. et al. Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells. Energy Environ. Sci. 10, 1207–1212 (2017).

    Article  Google Scholar 

  41. 41.

    Bryant, D. et al. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ. Sci. 9, 1655–1660 (2016).

    Article  Google Scholar 

  42. 42.

    Domanski, K., Alharbi, E. A., Hagfeldt, A., Grätzel, M. & Tress, W. Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 3, 61–67 (2018).

    Article  Google Scholar 

  43. 43.

    Nie, W. et al. Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat. Commun. 7, 11574 (2016).

    Article  Google Scholar 

  44. 44.

    Müller, C. et al. Water infiltration in methylammonium lead iodide perovskite: Fast and inconspicuous. Chem. Mater. 27, 7835–7841 (2015).

    Article  Google Scholar 

  45. 45.

    Duong, T. et al. Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv. Energy Mater. 7, 1700228 (2017).

    Article  Google Scholar 

  46. 46.

    Kato, Y. et al. Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interfaces 2, 2–7 (2015).

    Article  Google Scholar 

  47. 47.

    Alberti, A. et al. Similar structural dynamics for the degradation of CH3NH3PbI3 in air and in vacuum. ChemPhysChem 16, 3064–3071 (2015).

    Article  Google Scholar 

  48. 48.

    Han, Y. et al. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 3, 8139–8147 (2015).

    Article  Google Scholar 

  49. 49.

    Hsiao, Y.-T. & Chen, C.-H. Maximum power tracking for photovoltaic power system. In Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344) 2, 1035–1040 (IEEE, 2002).

Download references


The authors thank F. Debrot and C. Allebé for SHJ wet-chemical processing, J. Geissbühler for help regarding the Arduino microcontroller and circuit design, G. Charitat for the bottom cell deposition and A. Walter, S.-J. Moon, T. C.-J. Yang, P. Fiala and F. Fu for help regarding perovskite top cell processes and fruitful discussions. This work was funded by the Nano-Tera.ch Synergy project, the Swiss Federal Office of Energy under grant SI/501072-01, the Swiss National Science Foundation via the Sinergia Episode (CRSII5_171000) and NRP70 Energy Turnaround PV2050 (407040) projects and the European Union’s Horizon 2020 research and innovation program under grant agreement no. 653296 (CHEOPS).

Author information




F.S. and J.W. contributed equally to this work. F.S and J.W designed the experiments and carried out the device fabrication. B.A.K. and M.Br. contributed to the development of the perovskite top cell. R.M., B.P.-S., L.B., M.Bo. and M.D. developed and fabricated the silicon heterojunction bottom cells. D.S., L.D. and J.J.D.L developed the ALD buffer layer. G.C. and B.N. carried out the encapsulation for stability tests. Q.J. performed the FIB and TEM characterization and, with J.W., the SEM analysis. M.Br. recorded the AFM data. F.S., J.W. and Q.J. carried out data analysis and prepared the figures. J.W. carried out the degradation stability tests and analysed the data. Q.J., B.N., M.Bo., M.D., S.N. and C.B. supervised different parts of the work. F.S. and Q.J. wrote the paper, and all authors commented on the manuscript.

Corresponding authors

Correspondence to Florent Sahli or Quentin Jeangros.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

13 Supplementary Figures, 4 Supplementary References

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sahli, F., Werner, J., Kamino, B.A. et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature Mater 17, 820–826 (2018). https://doi.org/10.1038/s41563-018-0115-4

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing