Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spin colossal magnetoresistance in an antiferromagnetic insulator

Abstract

Colossal magnetoresistance (CMR) refers to a large change in electrical conductivity induced by a magnetic field in the vicinity of a metal–insulator transition and has inspired extensive studies for decades1,2. Here we demonstrate an analogous spin effect near the Néel temperature, TN = 296 K, of the antiferromagnetic insulator Cr2O3. Using a yttrium iron garnet YIG/Cr2O3/Pt trilayer, we injected a spin current from the YIG into the Cr2O3 layer and collected, via the inverse spin Hall effect, the spin signal transmitted into the heavy metal Pt. We observed a two orders of magnitude difference in the transmitted spin current within 14 K of the Néel temperature. This transition between spin conducting and non-conducting states was also modulated by a magnetic field in isothermal conditions. This effect, which we term spin colossal magnetoresistance (SCMR), has the potential to simplify the design of fundamental spintronics components, for instance, by enabling the realization of spin-current switches or spin-current-based memories.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Concept of SCMR.
Fig. 2: Spin conductor–non-conductor transition in Cr2O3.
Fig. 3: SCMR in Cr2O3.

References

  1. 1.

    Ramirez, A. P. Colossal magnetoresistance. J. Phys. Condens. Matter 9, 8171–8199 (1997).

    Article  Google Scholar 

  2. 2.

    Tokura, Y. Critical features of colossal magnetoresistive manganites. Rep. Progress. Phys. 69, 797–851 (2006).

    Article  Google Scholar 

  3. 3.

    Žutić, I. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  Google Scholar 

  4. 4.

    Maekawa, S. Concepts in Spin Electronics (Oxford Univ. Press, Oxford, 2006).

  5. 5.

    Kajiwara, Y. et al. Transmission of electrical signals by spin–wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    Article  Google Scholar 

  6. 6.

    Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    Article  Google Scholar 

  7. 7.

    Takei, S., Halperin, B. I., Yacoby, A. & Tserkovnyak, Y. Superfluid spin transport through antiferromagnetic insulators. Phys. Rev. B 90, 094408 (2014).

    Article  Google Scholar 

  8. 8.

    Cornelissen, L., Liu, J., Duine, R., Ben Youssef, J. & van Wees, B. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015).

    Article  Google Scholar 

  9. 9.

    Qiu, Z. et al. Spin–current probe for phase transition in an insulator. Nat. Commun. 7, 12670 (2016).

    Article  Google Scholar 

  10. 10.

    Tserkovnyak, Y. Spintronics: an insulator-based transistor. Nat. Nanotech. 8, 706–707 (2013).

    Article  Google Scholar 

  11. 11.

    Brockhouse, B. N. Antiferromagnetic structure in Cr2O3. J. Chem. Phys. 21, 961–962 (1953).

    Article  Google Scholar 

  12. 12.

    Foner, S. High-field antiferromagnetic resonance in Cr2O3. Phys. Rev. 130, 183–197 (1963).

    Article  Google Scholar 

  13. 13.

    Nagamiya, T., Yosida, K. & Kubo, R. Antiferromagnetism. Adv. Phys. 4, 1–112 (1955).

    Article  Google Scholar 

  14. 14.

    Xiao, J. et al. Theory of magnon-driven spin Seebeck effect. Phys. Rev. B 81, 214418 (2010).

    Article  Google Scholar 

  15. 15.

    Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article  Google Scholar 

  16. 16.

    Wang, H., Du, C., Hammel, P. C. & Yang, F. Spin transport in antiferromagnetic insulators mediated by magnetic correlations. Phys. Rev. B 91, 220410(R) (2015).

    Article  Google Scholar 

  17. 17.

    Moriyama, T. et al. Anti-damping spin transfer torque through epitaxial nickel oxide. Appl. Phys. Lett. 106, 162406 (2015).

    Article  Google Scholar 

  18. 18.

    Uchida, K. et al. Spin Seebeck insulator. Nat. Mater. 9, 894–897 (2010).

    Article  Google Scholar 

  19. 19.

    Uchida, K. et al. Longitudinal spin Seebeck effect: from fundamentals to applications. J. Phys. Condens. Matter. Inst. Phys. J. 26, 343202 (2014).

    Article  Google Scholar 

  20. 20.

    Qiu, Z., Hou, D., Uchida, K. & Saitoh, E. Influence of interface condition on spin-Seebeck effects. J. Phys. D 48, 164013 (2015).

    Article  Google Scholar 

  21. 21.

    Kikkawa, T. et al. Critical suppression of spin Seebeck effect by magnetic fields. Phys. Rev. B 92, 064413 (2015).

    Article  Google Scholar 

  22. 22.

    Tobia, D., Winkler, E., Zysler, R. D., Granada, M. & Troiani, H. E. Size dependence of the magnetic properties of antiferromagnetic Cr2O3 nanoparticles. Phys. Rev. B 78, 104412 (2008).

    Article  Google Scholar 

  23. 23.

    Pati, S. P. et al. Finite-size scaling effect on Néel temperature of antiferromagnetic Cr2O3 (0001) films in exchange-coupled heterostructures. Phys. Rev. B 94, 224417 (2016).

    Article  Google Scholar 

  24. 24.

    Wu, S. M., Pearson, J. E. & Bhattacharya, A. Paramagnetic spin Seebeck effect. Phys. Rev. Lett. 114, 186602 (2015).

    Article  Google Scholar 

  25. 25.

    Kim, S. K., Tserkovnyak, Y. & Tchernyshyov, O. Propulsion of a domain wall in an antiferromagnet by magnons. Phys. Rev. B 90, 104406 (2014).

    Article  Google Scholar 

  26. 26.

    Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    Article  Google Scholar 

  27. 27.

    Moriyama, T., Oda, K. & Ono, T. Spin torque control of antiferromagnetic moments in NiO. Preprint at https://arxiv.org/abs/1708.07682 (2017).

  28. 28.

    Chen, X. Z. et al. Antidamping torque-induced switching in biaxial antiferromagnetic insulators. Preprint at https://arxiv.org/abs/1804.05462 (2018).

  29. 29.

    Vasyuchka, V. I. Microwave-induced spin currents in ferromagnetic-insulator—normal-metal bilayer system. Appl. Phys. Lett. 105, 092404 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JST-ERATO ‘Spin Quantum Rectification’, JST-PRESTO ‘Phase Interfaces for Highly Efficient Energy Utilization’, Grant-in-Aid for Scientific Research on Innovative Area, ‘Nano Spin Conversion Science’ (26103005 and 26103006), Grant-in-Aid for Scientific Research (S) (25220910), Grant-in-Aid for Scientific Research (A) (25247056 and 15H02012), Grant-in-Aid for Challenging Exploratory Research (26600067), Grant-in-Aid for Research Activity Start-up (25889003) and World Premier International Research Center Initiative (WPI), all from MEXT, Japan. Z.Q. acknowledges support from the ‘Fundamental Research Funds for the Central Universities (DUT17RC(3)073)’. D.H. acknowledges support from Grant-in-Aid for young scientists (B) (JP17K14331), J.B. acknowledges supports from the Graduate Program in Spintronics, Tohoku University, and Grand-in-Aid for Young Scientists (B) (17K14102). K.Y. and O.G. acknowledge support from the Humboldt Foundation and EU ERC Advanced Grant no. 268066. K.Y. acknowledges the Transregional Collaborative Research Center (SFB/TRR) 173 SPIN+X and DAAD project ‘MaHoJeRo’. O.G. acknowledges the EU FET Open RIA Grant no. 766566 and the DFG (project SHARP 397322108).

Author information

Affiliations

Authors

Contributions

Z.Q. and D.H. designed the experiment, Z.Q. fabricated the samples and collected all the data. Z.Q., D.H., J.B. and K.Y. analysed the data. J.B., K.Y. and O.G. contributed theoretical discussions. E.S. supervised this study. All the authors discussed the results and prepared the manuscript.

Corresponding author

Correspondence to Dazhi Hou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Supplementary Figures 1–3, Supplementary References 1–5

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qiu, Z., Hou, D., Barker, J. et al. Spin colossal magnetoresistance in an antiferromagnetic insulator. Nature Mater 17, 577–580 (2018). https://doi.org/10.1038/s41563-018-0087-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing