Letter | Published:

Spin colossal magnetoresistance in an antiferromagnetic insulator


Colossal magnetoresistance (CMR) refers to a large change in electrical conductivity induced by a magnetic field in the vicinity of a metal–insulator transition and has inspired extensive studies for decades1,2. Here we demonstrate an analogous spin effect near the Néel temperature, TN = 296 K, of the antiferromagnetic insulator Cr2O3. Using a yttrium iron garnet YIG/Cr2O3/Pt trilayer, we injected a spin current from the YIG into the Cr2O3 layer and collected, via the inverse spin Hall effect, the spin signal transmitted into the heavy metal Pt. We observed a two orders of magnitude difference in the transmitted spin current within 14 K of the Néel temperature. This transition between spin conducting and non-conducting states was also modulated by a magnetic field in isothermal conditions. This effect, which we term spin colossal magnetoresistance (SCMR), has the potential to simplify the design of fundamental spintronics components, for instance, by enabling the realization of spin-current switches or spin-current-based memories.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Ramirez, A. P. Colossal magnetoresistance. J. Phys. Condens. Matter 9, 8171–8199 (1997).

  2. 2.

    Tokura, Y. Critical features of colossal magnetoresistive manganites. Rep. Progress. Phys. 69, 797–851 (2006).

  3. 3.

    Žutić, I. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

  4. 4.

    Maekawa, S. Concepts in Spin Electronics (Oxford Univ. Press, Oxford, 2006).

  5. 5.

    Kajiwara, Y. et al. Transmission of electrical signals by spin–wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

  6. 6.

    Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

  7. 7.

    Takei, S., Halperin, B. I., Yacoby, A. & Tserkovnyak, Y. Superfluid spin transport through antiferromagnetic insulators. Phys. Rev. B 90, 094408 (2014).

  8. 8.

    Cornelissen, L., Liu, J., Duine, R., Ben Youssef, J. & van Wees, B. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015).

  9. 9.

    Qiu, Z. et al. Spin–current probe for phase transition in an insulator. Nat. Commun. 7, 12670 (2016).

  10. 10.

    Tserkovnyak, Y. Spintronics: an insulator-based transistor. Nat. Nanotech. 8, 706–707 (2013).

  11. 11.

    Brockhouse, B. N. Antiferromagnetic structure in Cr2O3. J. Chem. Phys. 21, 961–962 (1953).

  12. 12.

    Foner, S. High-field antiferromagnetic resonance in Cr2O3. Phys. Rev. 130, 183–197 (1963).

  13. 13.

    Nagamiya, T., Yosida, K. & Kubo, R. Antiferromagnetism. Adv. Phys. 4, 1–112 (1955).

  14. 14.

    Xiao, J. et al. Theory of magnon-driven spin Seebeck effect. Phys. Rev. B 81, 214418 (2010).

  15. 15.

    Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

  16. 16.

    Wang, H., Du, C., Hammel, P. C. & Yang, F. Spin transport in antiferromagnetic insulators mediated by magnetic correlations. Phys. Rev. B 91, 220410(R) (2015).

  17. 17.

    Moriyama, T. et al. Anti-damping spin transfer torque through epitaxial nickel oxide. Appl. Phys. Lett. 106, 162406 (2015).

  18. 18.

    Uchida, K. et al. Spin Seebeck insulator. Nat. Mater. 9, 894–897 (2010).

  19. 19.

    Uchida, K. et al. Longitudinal spin Seebeck effect: from fundamentals to applications. J. Phys. Condens. Matter. Inst. Phys. J. 26, 343202 (2014).

  20. 20.

    Qiu, Z., Hou, D., Uchida, K. & Saitoh, E. Influence of interface condition on spin-Seebeck effects. J. Phys. D 48, 164013 (2015).

  21. 21.

    Kikkawa, T. et al. Critical suppression of spin Seebeck effect by magnetic fields. Phys. Rev. B 92, 064413 (2015).

  22. 22.

    Tobia, D., Winkler, E., Zysler, R. D., Granada, M. & Troiani, H. E. Size dependence of the magnetic properties of antiferromagnetic Cr2O3 nanoparticles. Phys. Rev. B 78, 104412 (2008).

  23. 23.

    Pati, S. P. et al. Finite-size scaling effect on Néel temperature of antiferromagnetic Cr2O3 (0001) films in exchange-coupled heterostructures. Phys. Rev. B 94, 224417 (2016).

  24. 24.

    Wu, S. M., Pearson, J. E. & Bhattacharya, A. Paramagnetic spin Seebeck effect. Phys. Rev. Lett. 114, 186602 (2015).

  25. 25.

    Kim, S. K., Tserkovnyak, Y. & Tchernyshyov, O. Propulsion of a domain wall in an antiferromagnet by magnons. Phys. Rev. B 90, 104406 (2014).

  26. 26.

    Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

  27. 27.

    Moriyama, T., Oda, K. & Ono, T. Spin torque control of antiferromagnetic moments in NiO. Preprint at https://arxiv.org/abs/1708.07682 (2017).

  28. 28.

    Chen, X. Z. et al. Antidamping torque-induced switching in biaxial antiferromagnetic insulators. Preprint at https://arxiv.org/abs/1804.05462 (2018).

  29. 29.

    Vasyuchka, V. I. Microwave-induced spin currents in ferromagnetic-insulator—normal-metal bilayer system. Appl. Phys. Lett. 105, 092404 (2014).

Download references


This work was supported by JST-ERATO ‘Spin Quantum Rectification’, JST-PRESTO ‘Phase Interfaces for Highly Efficient Energy Utilization’, Grant-in-Aid for Scientific Research on Innovative Area, ‘Nano Spin Conversion Science’ (26103005 and 26103006), Grant-in-Aid for Scientific Research (S) (25220910), Grant-in-Aid for Scientific Research (A) (25247056 and 15H02012), Grant-in-Aid for Challenging Exploratory Research (26600067), Grant-in-Aid for Research Activity Start-up (25889003) and World Premier International Research Center Initiative (WPI), all from MEXT, Japan. Z.Q. acknowledges support from the ‘Fundamental Research Funds for the Central Universities (DUT17RC(3)073)’. D.H. acknowledges support from Grant-in-Aid for young scientists (B) (JP17K14331), J.B. acknowledges supports from the Graduate Program in Spintronics, Tohoku University, and Grand-in-Aid for Young Scientists (B) (17K14102). K.Y. and O.G. acknowledge support from the Humboldt Foundation and EU ERC Advanced Grant no. 268066. K.Y. acknowledges the Transregional Collaborative Research Center (SFB/TRR) 173 SPIN+X and DAAD project ‘MaHoJeRo’. O.G. acknowledges the EU FET Open RIA Grant no. 766566 and the DFG (project SHARP 397322108).

Author information

Z.Q. and D.H. designed the experiment, Z.Q. fabricated the samples and collected all the data. Z.Q., D.H., J.B. and K.Y. analysed the data. J.B., K.Y. and O.G. contributed theoretical discussions. E.S. supervised this study. All the authors discussed the results and prepared the manuscript.

Competing interests

The authors declare no competing interests.

Correspondence to Dazhi Hou.

Supplementary information

  1. Supplementary Information

    Supplementary Notes 1–4, Supplementary Figures 1–3, Supplementary References 1–5

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.

About this article

Further reading

Fig. 1: Concept of SCMR.
Fig. 2: Spin conductor–non-conductor transition in Cr2O3.
Fig. 3: SCMR in Cr2O3.