Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence


The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explore the collective properties of condensate phases via phase fluctuations. Electrically gated oxide interfaces1,2, ultracold Fermi atoms3,4 and cuprate superconductors5,6, which are characterized by an intrinsically small phase stiffness, are paradigmatic examples where these tools are having a dramatic impact. Here we use light pulses shorter than the internal thermalization time to drive and probe the phase fragility of the Bi2Sr2CaCu2O8+δ cuprate superconductor, completely melting the superconducting condensate without affecting the pairing strength. The resulting ultrafast dynamics of phase fluctuations and charge excitations are captured and disentangled by time-resolved photoemission spectroscopy. This work demonstrates the dominant role of phase coherence in the superconductor-to-normal state phase transition and offers a benchmark for non-equilibrium spectroscopic investigations of the cuprate phase diagram.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Ultrafast gap filling via enhancement of phase fluctuations.
Fig. 2: Temporal evolution of the spectral function via SEDC–MDC global analysis.
Fig. 3: Role of phase fluctuations in the transient collapse of the condensate.


  1. 1.

    Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

    CAS  Google Scholar 

  2. 2.

    Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    CAS  Google Scholar 

  3. 3.

    Regal, C. & Jin, D. Experimental realization of the BCS-BEC crossover with a Fermi gas of atoms. Adv. At. Mol. Opt. Phys. 54, 1–79 (2007).

    CAS  Google Scholar 

  4. 4.

    Gaebler, J. P. et al. Observation of pseudogap behaviour in a strongly interacting Fermi gas. Nat. Phys. 6, 569–573 (2010).

    CAS  Google Scholar 

  5. 5.

    Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).

    CAS  Google Scholar 

  6. 6.

    Corson, J., Mallozzi, R., Orenstein, J., Eckstein, J. N. & Bozovic, I. Vanishing of phase coherence in underdoped Bi2Sr2CaCu2O8+δ. Nature 398, 221–223 (1999).

    CAS  Google Scholar 

  7. 7.

    Johnston, S. et al. Material and doping dependence of the nodal and antinodal dispersion renormalizations in single- and multilayer cuprates. Adv. Condens. Matter Phys. 2010, 968304 (2010).

    Google Scholar 

  8. 8.

    Kordyuk, V. et al. An ARPES view on the high-T c problem: phonons vs. spin-fluctuations. Eur. Phys. J. Spec. Top. 188, 153–162 (2010).

    CAS  Google Scholar 

  9. 9.

    Benfatto, L., Caprara, S., Castellani, C., Paramekanti, A. & Randeria, M. Phase fluctuations, dissipation, and superfluid stiffness in d-wave superconductors. Phys. Rev. B 63, 174513 (2001).

    Google Scholar 

  10. 10.

    Wang, Y. et al. Onset of the vortexlike Nernst signal above T c in La2–xSrxCuO4 and Bi2Sr2–yLayCuO6. Phys. Rev. B 64, 224519 (2001).

    Google Scholar 

  11. 11.

    Li, L. et al. Diamagnetism and Cooper pairing above T c in cuprates. Phys. Rev. B 81, 054510 (2010).

    Google Scholar 

  12. 12.

    Kondo, T. et al. Point nodes persisting far beyond T c in Bi2212. Nat. Commun. 6, 7699 (2015).

    Google Scholar 

  13. 13.

    Reber, T. J. et al. The origin and non-quasiparticle nature of Fermi arcs in Bi2Sr2CaCu2O8+δ. Nat. Phys. 8, 606–610 (2012).

    CAS  Google Scholar 

  14. 14.

    Madan, I. et al. Separating pairing from quantum phase coherence dynamics above the superconducting transition by femtosecond spectroscopy. Sci. Rep. 4, 5656 (2014).

    CAS  Google Scholar 

  15. 15.

    Perfetti, L. et al. Ultrafast dynamics of fluctuations in high-temperature superconductors far from equilibrium. Phys. Rev. Lett. 114, 067003 (2015).

    CAS  Google Scholar 

  16. 16.

    Gomes, K. K. et al. Mapping of the formation of the pairing gap in Bi2Sr2CaCu2O8+δ. J. Phys. Chem. Solids 69, 3034–3038 (2008).

    CAS  Google Scholar 

  17. 17.

    Ding, H. et al. Angle-resolved photoemission spectroscopy study of the superconducting gap anisotropy in Bi2Sr2CaCu2O8+x. Phys. Rev. B 54, R9678–R9681 (1996).

    CAS  Google Scholar 

  18. 18.

    Norman, M. R., Randeria, M., Ding, H. & Campuzano, J. C. Phenomenology of the low-energy spectral function in high-T c superconductors. Phys. Rev. B 57, R11093–R11096 (1998).

    CAS  Google Scholar 

  19. 19.

    Franz, M. & Millis, A. J. Phase fluctuations and spectral properties of underdoped cuprates. Phys. Rev. B 58, 14572–14580 (1998).

    CAS  Google Scholar 

  20. 20.

    Kwon, H.-J. & Dorsey, A. T. Effect of phase fluctuations on the single-particle properties of underdoped cuprates. Phys. Rev. B 59, 6438–6448 (1999).

    CAS  Google Scholar 

  21. 21.

    Smallwood, C. L. et al. Tracking cooper pairs in a cuprate superconductor by ultrafast angle-resolved photoemission. Science 336, 1137–1139 (2012).

    CAS  Google Scholar 

  22. 22.

    Zhang, W. et al. Signatures of superconductivity and pseudogap formation in nonequilibrium nodal quasiparticles revealed by ultrafast angle-resolved photoemission. Phys. Rev. B 88, 245132 (2013).

    Google Scholar 

  23. 23.

    Smallwood, C. L. et al. Time- and momentum-resolved gap dynamics in Bi2Sr2CaCu2O8+δ. Phys. Rev. B 89, 115126 (2014).

    Google Scholar 

  24. 24.

    Kusar, P. et al. Controlled vaporization of the superconducting condensate in cuprate superconductors by femtosecond photoexcitation. Phys. Rev. Lett. 101, 227001 (2008).

    CAS  Google Scholar 

  25. 25.

    Giannetti, C. et al. Discontinuity of the ultrafast electronic response of underdoped superconducting Bi2Sr2CaCu2O8+δ strongly excited by ultrashort light pulses. Phys. Rev. B 79, 224502 (2009).

    Google Scholar 

  26. 26.

    Giannetti, C. et al. Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach. Adv. Phys. 65, 58–238 (2016).

    CAS  Google Scholar 

  27. 27.

    Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    CAS  Google Scholar 

  28. 28.

    Sentef, M. et al. Examining electron-boson coupling using time-resolved spectroscopy. Phys. Rev. X 3, 041033 (2013).

    Google Scholar 

  29. 29.

    Kemper, A. F., Sentef, M. A., Moritz, B., Devereaux, T. P. & Freericks, J. K. Review of the theoretical description of time-resolved angle-resolved photoemission spectroscopy in electron–phonon mediated superconductors. Ann. Phys. 529, 1600235 (2017).

    Google Scholar 

  30. 30.

    Ishida, Y. et al. Quasi-particles ultra-fastly releasing kink bosons to form Fermi arcs in a cuprate superconductor. Sci. Rep. 6, 18747 (2016).

    CAS  Google Scholar 

  31. 31.

    Zhang, W. et al. Stimulated emission of Cooper pairs in a high-temperature cuprate superconductor. Sci. Rep. 6, 29100 (2016).

    CAS  Google Scholar 

  32. 32.

    Norman, M. R. et al. Destruction of the Fermi surface in underdoped high-T c superconductors. Nature 392, 157–160 (1998).

    CAS  Google Scholar 

  33. 33.

    Parham, S. et al. Ultrafast gap dynamics and electronic interactions in a photoexcited cuprate superconductor. Phys. Rev. X 7, 041013 (2017).

    Google Scholar 

  34. 34.

    Matsui, H. et al. BCS-like Bogoliubov quasiparticles in high-T c superconductors observed by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 90, 217002 (2003).

    CAS  Google Scholar 

  35. 35.

    Yang, H.-B. et al. Emergence of preformed Cooper pairs from the doped Mott insulating state in Bi2Sr2CaCu2O8+δ. Nature 456, 77–80 (2008).

    CAS  Google Scholar 

  36. 36.

    Hashimoto, M., Vishik, I. M., He, R.-H., Devereaux, T. P. & Shen, Z.-X. Energy gaps in high-transition-temperature cuprate superconductors. Nat. Phys. 10, 483–495 (2014).

    CAS  Google Scholar 

  37. 37.

    Graf, J. et al. Nodal quasiparticle meltdown in ultrahigh-resolution pump-probe angle-resolved photoemission. Nat. Phys. 7, 805–809 (2011).

    Google Scholar 

  38. 38.

    Hanaguri, T. et al. Coherence factors in a high-T c cuprate probed by quasi-particle scattering off vortices. Science 323, 923–926 (2009).

    CAS  Google Scholar 

  39. 39.

    Hinton, J. P. et al. The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors. Sci. Rep. 6, 23610 (2016).

    CAS  Google Scholar 

  40. 40.

    Feng, D. L. et al. Signature of superfluid density in the single-particle excitation spectrum of Bi2Sr2CaCu2O8+δ. Science 289, 277–281 (2000).

    CAS  Google Scholar 

  41. 41.

    Ding, H. et al. Coherent quasiparticle weight and its connection to high-T c superconductivity from angle-resolved photoemission. Phys. Rev. Lett. 87, 227001 (2001).

    CAS  Google Scholar 

  42. 42.

    Dal Conte, S. et al. Snapshots of the retarded interaction of charge carriers with ultrafast fluctuations in cuprates. Nat. Phys. 11, 421–426 (2015).

    CAS  Google Scholar 

  43. 43.

    Perfetti, L. et al. Ultrafast electron relaxation in superconducting Bi2Sr2CaCu2O8+δ by time-resolved photoelectron spectroscopy. Phys. Rev. Lett. 99, 197001 (2007).

    CAS  Google Scholar 

  44. 44.

    Rameau, J. D. et al. Energy dissipation from a correlated system driven out of equilibrium. Nat. Commun. 7, 13761 (2016).

    CAS  Google Scholar 

  45. 45.

    Averitt, R. D. et al. Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7–δ. Phys. Rev. B 63, 140502 (2001).

    Google Scholar 

  46. 46.

    Kaindl, R. A., Carnahan, M. A., Chemla, D. S., Oh, S. & Eckstein, J. N. Dynamics of Cooper pair formation in Bi2Sr2CaCu2O8+δ. Phys. Rev. B 72, 060510 (2005).

    Google Scholar 

  47. 47.

    Zhang, Z. et al. Photoinduced filling of near-nodal gap in Bi2Sr2CaCu2O8+δ. Phys. Rev. B 96, 064510 (2017).

    Google Scholar 

  48. 48.

    Chubukov, A. V., Norman, M. R., Millis, A. J. & Abrahams, E. Gapless pairing and the Fermi arc in the cuprates. Phys. Rev. B 76, 180501 (2007).

    Google Scholar 

  49. 49.

    Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, Cambridge, UK, 2000).

  50. 50.

    Baldini, E. et al. Clocking the onset of bilayer coherence in a high-T c cuprate. Phys. Rev. B 95, 024501 (2017).

    Google Scholar 

Download references


We thank L. Benfatto, A. Chubukov and M. Franz for useful and fruitful discussions. C.G. acknowledges financial support from MIUR through the PRIN 2015 Programme (Prot. 2015C5SEJJ001) and from Università Cattolica del Sacro Cuore through D.1, D.2.2 and D.3.1 grants. This research was undertaken thanks in part to funding from the Max Planck-UBC-UTokyo Centre for Quantum Materials and the Canada First Research Excellence Fund, Quantum Materials and Future Technologies Program. The work at UBC was supported by the Gordon and Betty Moore Foundation's EPiQS Initiative, grant GBMF4779, the Killam, Alfred P. Sloan and Natural Sciences and Engineering Research Council of Canada's (NSERCs) Steacie Memorial Fellowships (A.D.), the Alexander von Humboldt Fellowship (A.D.), the Canada Research Chairs Program (A.D.), NSERC, Canada Foundation for Innovation (CFI), CIFAR Quantum Materials and CIFAR Global Scholars (E.H.d.S.N.). E.R. acknowledges support from the Swiss National Science Foundation (SNSF) grant no. P300P2-164649. G.D.G. is supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, US Department of Energy under contract no. DE-AC02-98CH10886. J.S. and R.D.Z. are supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science.

Author information




F.B., E.H.d.S.N., D.J.J., C.G. and A.D. conceived the investigation. F.B. performed TR-ARPES measurements with the assistance of E.H.d.S.N., E.R. and M.Z., and F.B., E.H.d.S.N., E.R., M.Z., S.P., R.P.D., M.M., M.S., B.Z., P.N., S.Z., A.K.M. and G.L. were responsible for operation and maintenance of the experimental system. F.B., E.H.d.S.N., E.R., C.G. and A.D. were responsible for data analysis and interpretation. R.D.Z., J.S. and G.D.G. provided Bi2212 samples. All of the authors discussed the underlying physics and contributed to the manuscript. F.B., E.H.d.S.N., R.P.D., C.G. and A.D. wrote the manuscript. A.D. was responsible for the overall direction, planning and management of the project.

Corresponding authors

Correspondence to F. Boschini or A. Damascelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information, 6 figures, 7 references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boschini, F., da Silva Neto, E.H., Razzoli, E. et al. Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence. Nature Mater 17, 416–420 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing