Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Atomic scale imaging of magnetic circular dichroism by achromatic electron microscopy

A Publisher Correction to this article was published on 14 February 2018

This article has been updated

Abstract

In order to obtain a fundamental understanding of the interplay between charge, spin, orbital and lattice degrees of freedom in magnetic materials and to predict and control their physical properties1,2,3, experimental techniques are required that are capable of accessing local magnetic information with atomic-scale spatial resolution. Here, we show that a combination of electron energy-loss magnetic chiral dichroism4 and chromatic-aberration-corrected transmission electron microscopy, which reduces the focal spread of inelastically scattered electrons by orders of magnitude when compared with the use of spherical aberration correction alone, can achieve atomic-scale imaging of magnetic circular dichroism and provide element-selective orbital and spin magnetic moments atomic plane by atomic plane. This unique capability, which we demonstrate for Sr2FeMoO6, opens the door to local atomic-level studies of spin configurations in a multitude of materials that exhibit different types of magnetic coupling, thereby contributing to a detailed understanding of the physical origins of magnetic properties of materials at the highest spatial resolution.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Schematic diagram illustrating atomic-scale imaging of magnetic circular dichroism (MCD).
Fig. 2: Achromatic SREELS image of SFMO.
Fig. 3: Atomic-scale imaging of magnetic circular dichroism (MCD) in SFMO.
Fig. 4: Simulations of scattering cross-sections in SREELS.

Change history

  • 14 February 2018

    In Fig. 1 of the version of this Letter originally published, the word ‘Subtract’ was missing from the green box to the left of panel f. This has now been corrected in all versions of the Letter.

References

  1. Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).

    Article  CAS  Google Scholar 

  2. Zubko, P., Gariglio, S., Gabay, M., Ghosez, P. & Triscone, J. M. Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2, 141–165 (2011).

    Article  CAS  Google Scholar 

  3. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    Article  CAS  Google Scholar 

  4. Schattschneider, P. et al. Detection of magnetic circular dichroism using a transmission electron microscope. Nature 441, 486–488 (2006).

    Article  CAS  Google Scholar 

  5. Wiesendanger, R. et al. Topographic and magnetic-sensitive scanning tunneling microscopy study of magnetite. Science 255, 583–586 (1992).

    Article  CAS  Google Scholar 

  6. Heinze, S. et al. Real-space imaging of two-dimensional antiferromagnetism on the atomic scale. Science 294, 1488–1495 (2001).

    Article  Google Scholar 

  7. Kaiser, U., Schwarz, A. & Wiesendanger, R. Magnetic exchange force microscopy with atomic resolution. Nature 446, 522–525 (2007).

    Article  CAS  Google Scholar 

  8. Beaurepaire, E, Bulou, H, Scheurer, F. & Kappler, J. P. Magnetism and Synchrotron Radiation. (Springer: Heidelberg, 2009).

    Google Scholar 

  9. Chao, W. L., Harteneck, B. D., Liddle, J. A., Anderson, E. H. & Attwood, D. T. Soft X-ray microscopy at a spatial resolution better than 15nm. Nature 435, 1210–1213 (2005).

    Article  CAS  Google Scholar 

  10. Zhu, X. H. et al Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography. Proc. Natl Acad. Sci. USA 113, E8219–E8227 (2016).

    Article  CAS  Google Scholar 

  11. Midgley, P. A. & Dunin-Borkowski, R. E. Electron tomography and holography in materials science. Nat. Mater. 8, 271–280 (2009).

    Article  CAS  Google Scholar 

  12. Lidbaum, H. et al. Quantitative magnetic information from reciprocal space maps in transmission electron microscopy. Phys. Rev. Lett. 102, 037201 (2009).

    Article  Google Scholar 

  13. Wang, Z. Q., Zhong, X. Y., Yu, R., Cheng, Z. Y. & Zhu, J. Quantitative experimental determination of site-specific magnetic structures by transmitted electrons. Nat. Commun. 4, 1395 (2013).

    Article  CAS  Google Scholar 

  14. Song, D. S., Li, G., Cai, J. W. & Zhu, J. A general way for quantitative magnetic measurement by transmitted electrons. Sci. Rep. 6, 18489 (2016).

    Article  CAS  Google Scholar 

  15. Wang, Z. C. et al. Effects of dynamic diffraction conditions on magnetic parameter determination in a double perovskite Sr2FeMoO6 using electron energy-loss magnetic chiral dichroism. Ultramicroscopy 176, 212–217 (2017).

    Article  CAS  Google Scholar 

  16. Schattschneider, P. et al. Detection of magnetic circular dichroism on the two-nanometer scale. Phys. Rev. B 78, 104413 (2008).

    Article  Google Scholar 

  17. Jin, L. et al. Direct demonstration of a magnetic dead layer resulting from A-site cation inhomogeneity in a (La,Sr)MnO3 epitaxial film system. Adv. Mater. Interfaces 3, 1600414 (2016).

    Article  Google Scholar 

  18. Thersleff, T., Rusz, J., Hjorvarsson, B. & Leifer, K. Detection of magnetic circular dichroism with subnanometer convergent electron beams. Phys. Rev. B 94, 134430 (2016).

    Article  Google Scholar 

  19. Rusz, J. et al. Magnetic measurements with atomic-plane resolution. Nat. Commun. 7, 12672 (2016).

    Article  CAS  Google Scholar 

  20. Rusz, J. et al. Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe. Phys. Rev. Lett. 113, 145501 (2014).

    Article  Google Scholar 

  21. Idrobo, J. C. et al. Detecting magnetic ordering with atomic size electron probes. Adv. Struct. Chem. Imag. 2, 5 (2016).

    Article  Google Scholar 

  22. Reimer, L., Fromn, I., Hirsch, P., Plate, U. & Rennekamp, R. Combination of EELS modes and electron spectroscopic imaging and diffraction in an energy-filtering electron microscope. Ultramicroscopy 46, 335–347 (1992).

    Article  CAS  Google Scholar 

  23. Kimoto, K., Sekiguchi, T. & Aoyama, T. Chemical shift mapping of Si L and K edges using spatially resolved EELS and energy-filtering TEM. J. Electron Microsc. 46, 369–374 (1997).

    Article  CAS  Google Scholar 

  24. Walther, T. Electron energy-loss spectroscopic profiling of thin film structures: 0.39 nm line resolution and 0.04 eV precision measurement of near-edge structure shifts at interfaces. Ultramicroscopy 96, 401–411 (2003).

    Article  CAS  Google Scholar 

  25. Kabius, B. et al. First application of Cc-corrected imaging for high-resolution and energy-filtered TEM. J. Electron Microsc. 58, 147–155 (2009).

    Article  CAS  Google Scholar 

  26. Urban, K. W. et al. Achromatic elemental mapping beyond the nanoscale in the transmission electron microscope. Phys. Rev. Lett. 110, 185507 (2013).

    Article  CAS  Google Scholar 

  27. Forbes, B. D., Houben, L., Mayer, J., Dunin-Borkowski, R. E. & Allen, L. J. Elemental mapping in achromatic atomic-resolution energy-filtered transmission electron microscopy. Ultramicroscopy 147, 98–105 (2014).

    Article  CAS  Google Scholar 

  28. Calmels, L. et al. Experimental application of sum rules for electron energy loss magnetic chiral dichroism. Phys. Rev. B 76, 060409 (2007).

    Article  Google Scholar 

  29. Rusz, J., Eriksson, O., Novák, P. & Oppeneer, P. Sum rules for electron energy loss near edge spectra. Phys. Rev. B 89, 134428 (2014).

    Article  Google Scholar 

  30. Koide, T. et al. Microscopic origin of ferrimagnetism of a double perovskite Sr2FeMoO6: an X-ray magnetic circular dichroism study. J. Phys. Conf. Ser. 502, 012003 (2014).

    Article  CAS  Google Scholar 

  31. Kobayashi, K.-I., Kimura, T., Sawada, H., Terakura, K. & Tokura, Y. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 395, 677–680 (1998).

    Article  CAS  Google Scholar 

  32. Moritomo, Y. et al. Crystal and magnetic structure of conducting double perovskite Sr2FeMoO6. J. Phys. Soc. Jap 69, 1723–1726 (2000).

    Article  CAS  Google Scholar 

  33. Serrate, D., De Teresa, J. M. & Ibarra, M. R. Double perovskites with ferromagnetism above room temperature. J. Phys. Condens. Matter 19, 023201 (2007).

    Article  Google Scholar 

  34. Barthel, J., Houben, L. & Tillmann, K. J. Large-Scale Res. Facil. 1, A34 (2015).

    Article  Google Scholar 

  35. Varela, M. et al. Atomic-resolution imaging of oxidation states in manganites. Phys. Rev. B 79, 085117 (2009).

    Article  Google Scholar 

  36. Cueva, P. C., Hovden, R., Mundy, J. A., Xin, H. L. & Muller, D. A. Data processing for atomic resolution electron energy loss spectroscopy. Microsc. Microanal. 18, 667–669 (2012).

    Article  Google Scholar 

  37. Rusz, J., Bhowmick, S., Eriksson, M. & Karlsson, N. Scattering of electron vortex beams on a magnetic crystal: Towards atomic-resolution magnetic measurements. Phys. Rev. B 89, 134428 (2014).

    Article  Google Scholar 

  38. Song, D. S., Wang, Z. Q. & Zhu, J. Effect of the asymmetry of dynamical electron diffraction on intensity of acquired EMCD signals. Ultramicroscopy 148, 42–51 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program (2016YFB0700402), the National Natural Science Foundation of China (51671112, 5171101391, 51471096, 11374174, 51390471, 51527803, 51525102, 51390475, 51371102), the National Basic Research Program of China (2015CB921700, 2015CB654902), Tsinghua University (20141081200), National Key Scientific Instruments and Equipment Development Project (2013YQ120353) and the “Strategic Partnership RWTH-Aachen University and Tsinghua University” Program. R.D.-B. is grateful for funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ ERC grant agreement number 320832. This work made use of resources in Forschungszentrum Jülich, Germany and the National Center for Electron Microscopy in Beijing, China. J.R. acknowledges the Swedish Research Council and Göran Gustafsson’s Foundation for financial support. Calculations were performed using the Swedish National Infrastructure for Computing (SNIC) on a Triolith cluster at the National Supercomputer Center (NSC) of Linköping University. L. Houben, C.-L. Jia, M. Lentzen, M. Luysberg, C. B. Boothroyd, A. Schwedt, D. Meertens, M. Kruth, M. Duchamp, E. Kita, H. Yanagihara, P. Ercius, C. Kisielowski, F.-R. Chen, M. Linck, H. Müller and M. Haider are gratefully acknowledged for helpful discussions and assistance.

Author information

Authors and Affiliations

Authors

Contributions

X.Y.Z. initiated the idea and developed the principles. Z.C.W. prepared the TEM samples, performed HRTEM/STEM experiments, processed the experimental data under the supervision of L.J. and X.Y.Z., and drafted the manuscript. A.T., L.J. and X.Y.Z. carried out achromatic atomic-scale SREELS and EMCD measurements in Jülich. J.R. and D.T. carried out theoretical simulations of atomic-scale mapping of MCD. R.Y. and J.Z. participated in the development of the principles and experimental design. Y.M. provided the bulk sample. J.M., R.D.-B., R.Y. and J.Z. contributed to the scientific discussions. All of the authors participated in discussions and writing the manuscript.

Corresponding author

Correspondence to Xiaoyan Zhong.

Ethics declarations

Competing interests

The authors declare no competing financial interests

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A correction to this article is available online at https://doi.org/10.1038/s41563-018-0039-z.

Supplementary information

Supplementary Information

Supplementary Figures 1–3, Supplementary Table 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Tavabi, A.H., Jin, L. et al. Atomic scale imaging of magnetic circular dichroism by achromatic electron microscopy. Nature Mater 17, 221–225 (2018). https://doi.org/10.1038/s41563-017-0010-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-017-0010-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing