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Multi-ancestry meta-analysis of tobacco  
use disorder identifies 461 potential risk 
genes and reveals associations with multiple 
health outcomes

Sylvanus Toikumo    1,2,23, Mariela V. Jennings3,23, Benjamin K. Pham    3, 
Hyunjoon Lee4, Travis T. Mallard    5,6,7,8, Sevim B. Bianchi3, John J. Meredith    3, 
Laura Vilar-Ribó    9, Heng Xu3, Alexander S. Hatoum10, Emma C. Johnson    10, 
Vanessa K. Pazdernik    11, Zeal Jinwala    2, Shreya R. Pakala3, Brittany S. Leger3,12, 
Maria Niarchou    13, Michael Ehinmowo14, Penn Medicine BioBank*, 
Greg D. Jenkins11, Anthony Batzler11, Richard Pendegraft11, 
Abraham A. Palmer    3,15, Hang Zhou    16,17, Joanna M. Biernacka    11,18, 
Brandon J. Coombes11, Joel Gelernter    16,17, Ke Xu16,17, Dana B. Hancock    19, 
Nancy J. Cox20, Jordan W. Smoller    5,6,7,8, Lea K. Davis    4,13,20, 
Amy C. Justice    17,21,22, Henry R. Kranzler    1,2, Rachel L. Kember    1,2 & 
Sandra Sanchez-Roige    3,13,15 

Tobacco use disorder (TUD) is the most prevalent substance use disorder 
in the world. Genetic factors influence smoking behaviours and although 
strides have been made using genome-wide association studies to identify 
risk variants, most variants identified have been for nicotine consumption, 
rather than TUD. Here we leveraged four US biobanks to perform a 
multi-ancestral meta-analysis of TUD (derived via electronic health records) 
in 653,790 individuals (495,005 European, 114,420 African American and 
44,365 Latin American) and data from UK Biobank (ncombined = 898,680). We 
identified 88 independent risk loci; integration with functional genomic 
tools uncovered 461 potential risk genes, primarily expressed in the brain. 
TUD was genetically correlated with smoking and psychiatric traits from 
traditionally ascertained cohorts, externalizing behaviours in children 
and hundreds of medical outcomes, including HIV infection, heart disease 
and pain. This work furthers our biological understanding of TUD and 
establishes electronic health records as a source of phenotypic information 
for studying the genetics of TUD.

Tobacco use disorder (TUD) is the most prevalent substance use dis-
order (SUD) in the world, with 85% of smokers meeting criteria for 
TUD (also known as nicotine dependence)1,2. TUD is a problematic 
pattern of tobacco use that leads to clinically significant impairment 

or distress2. Individuals with nicotine dependence often experience 
withdrawal symptoms when they stop smoking. As a result, they often 
have substantial difficulty quitting and continue to smoke despite 
negative mental, social and medical consequences. Tobacco smoking 
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visits, described in Supplementary Table 3); controls were screened for 
the absence of a TUD diagnostic code. We benchmarked the TUD-EHR 
definition against self-reported smoking questionnaire data and other 
comorbid ICD codes (Supplementary Table 4). Across contributing 
biobanks, cases were enriched for ever-smokers (92–99%), with only 
a few (<2%) cases self-identifying as never-smokers (Supplementary 
Table 5). In contrast, a smaller proportion of controls were ever-smokers 
(17–56%), with a larger proportion self-identifying as never-smokers 
(39–73%). Attempts at smoking cessation were reported by 15–25% of 
controls and 65–95% of cases. Controls were comparable to cases for 
age and sex but reported much lower prevalences of other substance 
and psychiatric disorders than did cases. Thus, almost all TUD cases 
have evidence of being either former or current smokers on the basis 
of available self-report data.

SNP heritability and genetic correlations across sites
After applying similar data quality controls, we conducted within-cohort 
association analyses using logistic regression and relevant covariates 
(Methods). We estimated the proportion of variance attributable to the 
measured common variants (single nucleotide polymorphism (SNP) 
heritability, h2

SNP) to be ~5–15% (based on liability scale, assuming a 
lifetime risk of 12.5%; Fig. 1b and Supplementary Table 6), which is con-
sistent with previous nicotine-related GWAS13,27. Genetic correlations, 
rg, across sites and ancestries were mostly high and positive (rg > 0.51, 
P < 1.56 × 10−2, EUR sites; rg = 0.93, P = 0.45, AA sites; cross-ancestry 
rg = 0.74–0.84, P < 3.90 × 10−4; Fig. 1b and Supplementary Table 6), serv-
ing as the basis for ancestry-specific and multi-ancestry meta-analyses 
and suggesting that the genetic architecture of TUD is similar across 
ancestries.

Multi-ancestry meta-analyses of TUD
The primary multi-ancestry meta-analysis of 20,801,211 imputed 
SNPs (λGC = 1.141; Fig. 2) was performed on seven cohorts from four 
US biobanks, comprising 653,790 individuals with TUD phecode data 
available, with 75.71% EUR, 17.50% AA and 6.79% LA.

We identified 120 genome-wide significant (GWS) (P < 5.00 × 10−8) 
lead SNPs (r2 < 0.1) located in 88 independent loci (Supplementary 
Table 7). All GWS loci had been reported by previous smoking GWAS 
(Supplementary Table 7), including aspects of smoking initiation 
(88 of 88), age of initiation (14 of 88), consumption (38 of 88), ces-
sation (48 of 88) and nicotine dependence (1 of 88; Supplementary 
Figs. 2 and 3). While all these loci were recently discovered in a GWAS 
of 3.4 million individuals in the GSCAN study13, here we reproduce 
some of the GSCAN findings with a considerably smaller sample size 
(Supplementary Fig. 3).

Our analyses provide corroborative support for nicotinic acetyl-
choline receptor genes as risk genes for smoking-related traits: CHRNA5 
(rs576982, P = 3.4 × 10−19, chr. 15; this region includes rs16969968, a 
well-established functional missense polymorphism (D398N) in 
CHRNA5, P = 2.47 × 10−12), CHRNB2 (rs45490696, P = 1.45 × 10−9, chr. 1), 
CHRNA2 (rs2741339, P = 5.21 × 10−17, chr. 8) and CHRNA4 (rs2273500, 
P = 2.84 × 10−22, chr. 20). Second, we identified associations with vari-
ants in several genes that modulate dopaminergic transmission, such 
as the dopamine receptor D2 (DRD2: rs34632468, P = 1.04 × 10−11 and 
rs4936277, P = 1.81 × 10−9, chr. 11), known for its relationship with dopa-
mine and reward34, previously associated with nicotine dependence35 
and implicated in a recent large-scale GWAS of addiction36; dopamine 
beta-hydroxylase (DBH: rs2007153, P = 9.35 × 10−21 and rs2519155, 
P = 7.25 × 10−13, chr. 9), which encodes an enzyme necessary to convert 
dopamine to norepinephrine and has been consistently implicated in 
smoking behaviours13,37; lysine demethylase 4A (KDM4A: rs489319, 
P = 1.61 × 10−11, chr. 1), previously found to interact with dopaminergic 
agents and implicated in problematic opioid use38; phosphodiesterase 
4B (PDE4B: rs7528604, P = 5.68 × 10−10, chr. 1), which has regulatory 
effects on dopaminergic pathways and has been implicated in GWAS  

is the leading cause of preventable death worldwide, causing 6 million 
annual premature deaths3, and is also highly associated with other 
worldwide leading contributors of morbidity and mortality, including 
lung cancer, chronic obstructive pulmonary disease, cardiovascular 
disease, mood disorders and other SUDs4–6. Unfortunately, available 
preventative and treatment options for TUD have low success rates7.

Genetic factors influence smoking behaviours, with twin- 
heritability estimates ranging from ~30% to 70% (refs. 8–12). Recently, 
genome-wide association studies (GWAS) have expanded in size 
(~2.5 million) and yielded hundreds of new loci for smoking-related 
behaviours (summarized in Supplementary Table 1), primarily for nico-
tine consumption13. These GWAS have revealed pervasive pleiotropy, 
with Mendelian randomization (MR) analyses highlighting potential 
causal effects of regular tobacco smoking on health outcomes (for 
example, cardiovascular health14, cancer risk14 and bone mineral den-
sity15), numerous other SUDs (for example, alcohol14, cannabis16 and 
opioid use disorder (OUD)17) and psychiatric and related conditions 
(for example, major depressive disorder18, suicide-related behaviours19 
and loneliness20).

While these studies have been immensely successful, they have 
not focused on TUD itself, which consists of several components that 
begin with smoking initiation and regular use and develop into prob-
lematic use, dependence, cessation and relapse. As a result, relatively 
little is known about the specific genes that confer risk for the develop-
ment of TUD and associated conditions. One of the main roadblocks 
to progress in identifying risk-conferring genes has been the lack of 
sufficiently large samples with misuse phenotypes. This is an impor-
tant limitation because previous studies have shown that the genetic 
architecture of substance use is different from that of misuse21–26. The 
largest GWAS of nicotine dependence, comprising 58,000 European- 
and African-ancestry smokers, using the self-reported Fagerström test 
for nicotine dependence (FTND), identified only five loci27. In addition, 
while there have been nicotine-dependence GWAS in individuals of 
ancestries other than European28 (Supplementary Table 1 for full list), 
sample sizes for diverse populations have been limited (n < 12,000).

The use of electronic health records (EHR) is a relatively untapped, 
cost-effective strategy for characterizing smoking-related phenotypes, 
including TUD. EHR-defined TUD generally relies on International Clas-
sification of Disease (ICD) diagnostic codes, which can be aggregated 
into ‘phecodes’ that require the presence of an ICD code on two or 
more separate visits. TUD diagnostic codes are effective identifiers 
of smoking status29. A key consideration, and the one we examine in 
this study, is the use of TUD phecodes in large-scale GWAS to boost 
power and improve our ability to identify new loci for TUD29–31. To 
address this question, we performed a multi-ancestral meta-analysis 
of TUD comprising 653,790 individuals of European (EUR), African 
American (AA) and Latin American (LA) ancestry recruited from sev-
eral biobanks within the PsycheMERGE network32 (Vanderbilt Univer-
sity Medical Center’s biobank (BioVU) nEUR = 46,905; Mass General 
Brigham Biobank (MGBB) nEUR = 22,268; Penn Medicine BioBank 
(PMBB)33 nEUR = 28,999, nAA = 10,088; Million Veteran Program (MVP) 
nEUR = 396,833, nAA = 104,332, nLA = 44,365) and combined with exist-
ing data from the UK Biobank (UKBB; nEUR = 244,890), which used a 
less stringent definition. In secondary analyses, we further character-
ized the genetic architecture of TUD, examined pleiotropy with other 
psychiatric and medical outcomes and harnessed the data to reveal 
potential medications for treating this serious psychiatric condition.

Results
Cohort and phenotype descriptions
We included individuals from eight cohorts across five different sites 
(Fig. 1a for an overview of the cohorts; Supplementary Table 2 for sam-
ple sizes). The methods to ascertain cases were identical for seven of 
these cohorts. Individuals were identified as cases if they met criteria 
for a TUD phecode (a TUD ICD9 or ICD10 code on two or more separate 
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of externalizing behaviours39, smoking initiation37,39 and general liability 
for addiction36; and neural cell adhesion molecule 1, NCAM1 (rs9919558, 
P = 4.44 × 10−12, chr. 11), which modulates dopamine signalling40,41 and 
has been associated with several smoking-related traits35,37. We also 
identified an association with a deleterious (Combined Annotation 
Dependent Deletion = 18.9)42 SNP (rs986391, P = 3.08 × 10−14, chr. 5) in 
the TENM2 gene, recently implicated in smoking initiation (SmkInit), 
cigarettes smoked per day (CPD) and smoking cessation (SmkCess)13.

Furthermore, we identified variants in GRM8 (glutamate metabo-
tropic receptor 8; rs2157752, P = 5.32 × 10−9, chr. 7), important for 
mediating reward-related learning and memory, and in BDNF (rs6265, 
P = 7.98 × 10−10, chr. 11), a candidate gene in genetic studies of SUDs given 
its role in synaptogenesis and memory. None of the lead SNPs showed 
evidence of heterogeneity across cohorts, on the basis of the I2 index 
(Supplementary Fig. 4). Combining these data with UKBB (which uses 
a less stringent TUD definition, TUD-multi + UKBB) yielded fewer lead 
SNPs (Supplementary Table 8).

Ancestry-specific meta-analyses of TUD
We conducted within-ancestry meta-analyses of EUR (TUD-EUR) and 
AA (TUD-AA) using a sample-size weighted fixed effects model and a 
GWAS of LA (TUD-LA).

TUD-EUR included 11,422,241 imputed SNPs in a cohort of 163,734 
TUD cases and 331,271 controls, which is 8.5 times larger than the total 
sample size of previous nicotine-dependence GWAS27. Observable infla-
tion is attributable to polygenic signal rather than population stratifi-
cation or other confounding (linkage disequilibrium score regression 
(LDSC) intercept 1.049, s.e. = 0.012) and we did not identify evidence 
of heterogeneity (I2) across the cohorts (Supplementary Fig. 6). The 
TUD-EUR meta-analysis yielded a significant h2

SNP estimate of 11.70% 
(s.e. = 0.005; Supplementary Table 9) and identified 74 GWS significant 
lead SNPs located in 63 independent loci (Fig. 2b and Supplementary 
Table 10). Fourteen of these loci were ancestry specific in EUR and not 

GWS in the multi-ancestry GWAS. Among the 63 independent loci, 13 
were fine-mapped to a credible set (posterior inclusion probability 
>0.50), of which 6 harboured known protein-coding genes (CHRNB2, 
GALNT10, FAM168A, SPATS2, SYT17 and ASIC2; Supplementary Table 11).

Combining these data with those of UKBB in a secondary GWAS 
(TUD-EUR + UKBB) yielded very similar results (for example, similar 
h2

SNP estimate of 9.30% and rg estimate of 0.99, s.e. = 0.001; lead SNPs 
and independent loci presented in Supplementary Table 12). Consid-
ering the similarity between the primary and secondary GWAS, all 
downstream analyses used the EUR GWAS for the most stringent TUD 
definition (TUD-EUR), which excluded the UKBB sample.

The TUD-AA meta-analysis yielded a significant h2
SNP estimate of 

11.09% (s.e. = 0.014; Supplementary Table 9) and two independent 
loci (Supplementary Table 13), one on chr. 9 (rs2007153, P = 1.17 × 10−8) 
in DBH, which is new for the AA population, and another on chr. 20 
(rs6011779, P = 9.27 × 10−9) in the CHRNA4 gene, replicating a find-
ing from a previous multi-ancestral (EUR + AA) GWAS of smoking27. 
Multi-ancestry fine-mapping analyses using PAINTOR corroborated the 
region in chr. 9, identifying two potential causal variants in this locus 
(Supplementary Table 14). The TUD-LA GWAS yielded a significant h2

SNP 
estimate of 8.14% (s.e. = 0.02; Supplementary Table 9) but did not iden-
tify any GWS loci (Fig. 2), presumably due to the smaller sample size.

Integration of GWAS results with functional genomic data
To further our biological interpretation of the TUD-EUR GWAS results 
and prioritize potential candidate genes and proteins, we performed 
several in silico downstream analyses using MAGMA41,42, H-MAGMA43, 
S-MultiXcan/S-PrediXcan44, transcriptome-wide association studies 
(TWAS)45 and proteome-wide association studies (PWAS)45.

First, we conducted gene-based analyses via MAGMA41,42, which 
mapped SNP-level associations to 91 significant genes (P < 2.63 × 10−6), 
20 (21.62%) of which replicated genes near or in GWS loci (for example, 
CHRNA3, CHRNA4, KDM4A and DBH; Supplementary Table 15).

a b

0.06
(0.02)BioVU

MGBB

UKBB

PMBB

MVP

0 0.2 0.4 0.6 0.8 1.0

rg

BioVU

MGBB

UKBB

PMBB

MVP

0.15
(0.03)

0.13
(0.02)

0.05
(0.04)

0.09
(0.01)

TUD-EUR

TUD-EUR

TUD-EUR + UKBB TUD-multi

TUD-AA
TUD-multi + UKBB

Independent
associated

variants

Gene and gene
set analysis via

gene expression
and protein function

alterations

Tissue and cell
type analysis

Drug
repositioning

Genetic
correlations and

polygenic
analysis

Mendelian
randomization

UKBB EUR
(n = 244,890)

BioVU EUR
(n = 46,905)

MGBB EUR
(n = 22,268)

PMBB EUR
(n = 28,999)

MVP EUR
(n = 396,833)

PMBB AFR
(n = 10,088)

MVP AA
(n = 104,332)

MVP LA
(n = 44,365)

Fig. 1 | Overview of the cohorts, analysis pipeline and genetic correlations 
among the sites. a, We conducted independent GWAS of TUD cases and controls 
in individuals of European (EUR) ancestry across four PsycheMERGE sites (BioVU, 
Vanderbilt University Medical Center’s biobank; MGBB, Mass General Brigham 
Biobank; PMBB, Penn Medicine BioBank; and MVP, Million Veteran Program) and 
performed a GWAS meta-analysis (TUD-EUR); these summary results were used 
for all secondary analyses. For African American (AA), we conducted GWAS meta-
analysis of TUD cases and controls from the PMBB and MVP cohorts (TUD-AA). For 
Latin American (LA), we conducted GWAS of TUD cases and controls from the MVP 
cohort. Next, we performed a multi-ancestral GWAS meta-analysis (TUD-multi), 
which combined the results from all seven cohorts. We also obtained summary 

statistics from UK Biobank (UKBB), which used a less stringent case definition 
in individuals of EUR ancestry, and performed a GWAS meta-analysis within 
EUR individuals (TUD-EUR + UKBB) and across ancestries (TUD-multi + UKBB). 
Supplementary Table 2 summarizes the datasets used for the analyses. We 
subjected the TUD-EUR summary statistics to several secondary analyses to 
characterize the genetic architecture of TUD. b, LDSC genetic correlations (rg) for 
TUD between EUR sites were positive and high, ranging from 0.51 to unity (two-
sided P values are provided in Supplementary Table 6), with most CI overlapping 
(Supplementary Fig. 1). LDSC genetic correlation for TUD between the two AA 
samples was strongly positive (rg = 0.93) but not significant (P = 0.45). LDSC SNP 
heritability estimates (h2

SNP 5–15%) are shown in the diagonal.
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To identify neurobiologically relevant target genes, we incor-
porated TUD GWAS data with chromatin interaction profiles from 
human brain tissue using Hi-C coupled MAGMA (H-MAGMA)43. These 
analyses identified 1,017 unique gene–tissue pairs associated with TUD 
(P < 9.44 × 10−7), a significant proportion of which showed cell-type 
(15.63% cortical neurons, 16.42% iPSC-derived neurons, 20.75% mid-
brain dopaminergic neurons and 14.25% iPSC-derived astrocytes) or 
developmental stage-specific (15.73% fetal and 17.21% adult) expression 
(Supplementary Table 16).

Using S-MultiXcan to predict the effect of common SNP vari-
ation on gene expression in several brain tissues, we detected sig-
nificant associations for 46 genes (Supplementary Table 17), with 
effects dispersed across 13 brain regions (amygdala, anterior cingulate 
cortex, basal ganglia (caudate, nucleus accumbens and putamen), 
cortex and frontal cortex, cerebellar hemisphere, cerebellum, hip-
pocampus, hypothalamus, spinal cord, substantia nigra). Inspection 
of region-specific results via S-PrediXcan identified 25 genes which 
were consistently upregulated (GPX1, PPP6C, GMPPB, WDR6, QRICH1, 
NICN1, ARFRP1, METTL21B, RNF123, CCDC88B, HIST1H2BD, CCDC71 and 
PSMA4) or downregulated (CHRNA2, AMT, P4HTM, NCKIPSD, ATP23, 
DALRD3, MST1, RHCE, TSFM, RBM6, TRIM35 and PHACTR4) in more than 
one brain region (Supplementary Table 18).

Next, we assessed differential transcriptomic and proteomic 
regulation of TUD risk loci in the dorsolateral prefrontal cortex  
by performing TWAS (mRNA and splicing) and PWAS, respectively.  
Associations across these three regulatory models identified 59 TUD 
risk genes and proteins (32, mRNA expression; 13, splicing expression; 
14, proteome expression; Supplementary Tables 19 and 20), 51 of which 
were unique. Colocalization analysis identified four genes and proteins 

(NT5C2, GPX1, ABHD12 and RHCE) associated with TUD via their regu-
lation of brain expression levels and protein abundance (PP4 > 0.80, 
Supplementary Table 21 and Supplementary Fig. 7).

Overall, after controlling for several comparisons, these analyses 
identified 461 unique genes with statistical evidence of association 
with TUD (Fig. 3a and Supplementary Table 22). Of these, 159 genes 
converged across at least two methods and 2 genes (GPX1 and GMPPB) 
converged across all six methods and replicated previous GSCAN find-
ings. A total 110 (23.86%) of the 461 genes identified via these analyses 
were identified by the GWS loci and 2 were new TUD genes not identified 
in previous FTND or GSCAN analyses (PTCHD4 and THUMPD3), which 
prompt new hypotheses to be tested experimentally.

Tissue and cell-type analyses
To identify relevant tissues implicated in TUD, we performed various 
SNP (LDSC partitioned heritability) and gene-wide (MAGMA) analy-
ses. We performed partitioned heritability in LDSC to evaluate the 
enrichment of the genome-wide findings in over 50 functional genomic 
annotations (and across tissues, as described below). In the baseline 
LDSC model, conserved and regulatory functional annotations were 
significantly enriched (Supplementary Fig. 8 and Supplementary 
Table 23 for full list).

Tissue enrichment analyses in MAGMA use gene expression data 
from GTEx (v.8). In addition to non-brain tissues (that is, cardiovascular, 
haematopoietic, adrenal pancreas and other, P < 3.37 × 10−5; Supple-
mentary Table 24), we detected significant enrichment mostly in the 
brain (P = 1.53 × 10−15), spanning several brain regions, including the 
hippocampus, the limbic system and frontal cortex (Supplementary 
Tables 25 and 26 and Fig. 3b,c), most of which were also implicated 
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Fig. 2 | Manhattan and porcupine plots for the TUD-multi meta-analysis 
and ancestry-specific GWAS. a, TUD-multi identified 88 independent risk loci, 
all of which were recently identified by the GSCAN study. b, Porcupine plot of 
ancestry-specific meta-analyses identified 63 loci in the EUR cohort (red) and 
2 loci in the AA cohort (blue). No significant associations were detected in the 
LA cohort. We used a sign test to examine the 74 EUR lead SNPs in the AA and LA 

cohorts, of which 57 and 53, respectively, were directly analysed or had proxy 
SNPs in these populations (Supplementary Table 10). Most SNPs had the same 
direction of effect in both populations (AA = 45 out of 57, LA = 41 out of 53; sign 
test AA P = 1.31 × 10−5, LA P = 8.17 × 10−5; Supplementary Fig. 5). All statistical tests 
used were two-sided.
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in S-MultiXcan (Supplementary Table 17). Correlating the effects 
of SNP variation with brain imaging traits via BrainXcan identified 
similar results, including significant (P < 1.92 × 10−4) associations with 
decreased grey matter volume in the right ventral striatum (Supple-
mentary Table 27).

Next, we used FUMA to examine cell-type-specific gene expres-
sion associated with TUD, leveraging single-cell RNA sequencing 
(scRNA-seq) datasets. After multiple correction testing across data-
sets, we identified a significant association between TUD risk and 
cell-type-specific gene expression in GABAergic neurons for indi-
vidual human scRNA-seq datasets (Linnarsson, midbrain, GABA: 
P < 5.03 × 10−3; nbGABA: P < 4.29 × 10−2; Fig. 3d and Supplementary 
Table 28). These results did not survive conditional analyses within 
and across datasets.

Gene set and pathway analyses
We used MAGMA41,42 to conduct a gene-wise TUD analysis and to 
test for enrichment of pathways curated from several sources.  
After correcting for several comparisons, 13 related pathways and 
biological processes were significantly enriched for genes associ-
ated with TUD (P < 2.65 × 10−6; Supplementary Table 29). Associations 
implicated fundamental processes related to nicotine response (for 
example, high calcium and sodium permeable nicotinic acetylcholine 

receptors, P = 6.03 × 10−15; behavioural response to nicotine, 
P = 5.81 × 10−13), regulation of postsynaptic nicotinic acetylcholine 
receptors (P = 1.32 × 10−10) and nicotine effect on dopaminergic neu-
rons (P = 1.87 × 10−6), among others.

Drug repurposing
Linking transcriptome-wide patterns to perturbagens that pass the 
blood–brain barrier from the Library of Integrated Network-Based 
Cellular Signatures (LINCS)36 database identified 235 medications 
approved by the US Food and Drug Administration (Supplementary 
Table 30). Of the 235 identified medications, 20 targeted at least one 
mapped/independent gene from our GWAS (Fig. 4). The medications 
that significantly reversed (Bonferroni P < 6.03 × 10−5) the transcrip-
tional profile associated with TUD included varenicline (a well-known 
therapeutic for SmkCess), sodium channel blockers (for example, 
amiloride) and compounds which are used to treat conditions that 
commonly co-occur with TUD, such as antipsychotics (for example, 
clozapine), dopaminergic agents (for example, ropinirole), opioids (for 
example, nalbuphine) and antidepressants (for example, amoxapine), 
among others (Supplementary Table 30).

An additional drug repositioning analysis using DRUGSETS identi-
fied three significant (Bonferroni P < 6.80 × 10−5) medications: vareni-
cline, cytisine and galantamine (Supplementary Table 30).
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Fig. 3 | Integration with functional genomic data implicated 461 unique TUD 
candidate risk genes. a, Of 461 associated genes, 56 converged with at least 
three methods and were dispersed throughout the chromosomes. b, LDSC (SNP-
based) and MAGMA tissue-specific gene expression of TUD risk genes reveals 
substantial brain enrichment (Supplementary Tables 25 and 26). Only tissues 
that survived multiple testing are plotted (MAGMA, two-sided P < 9.26 × 10−4; 
LDSC, P < 2.44 × 10−4). c, The genetic findings across several levels of analysis 

(LDSC, MAGMA, S-MultiXcan and BrainXcan) implicated brain regions exhibiting 
anatomical differences in cases. d, Cell-type-specific expression of TUD risk 
genes. Results from MAGMA property analyses and gene expression using 
human scRNA-seq datasets (Supplementary Table 28 for full list). After multiple 
testing corrections for all datasets, only genes expressed in GABAergic neurons 
were associated with TUD (Supplementary Table 28). The asterisks denote 
independent cell-type associations across datasets.
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Genetic correlation with other traits
We estimated pairwise rg with TUD for 113 published phenotypes using 
LDSC46. TUD showed false discovery rate (FDR)-significant correlations 
rg with 76 traits (Fig. 5b and Supplementary Table 31). As expected, the 
strongest positive correlations were with smoking-related traits (for 
example, age of smoking initiation (AgeSmkInit) rg = −0.59, s.e. = 0.03; 
SmkInit rg = 0.81, s.e. = 0.02; CPD rg = 0.44, s.e. = 0.03; SmkCess rg = 0.66, 
s.e. = 0.02; FTND rg = 0.63, s.e. = 0.06; Fig. 5a) and other substance use 
traits (for example, cannabis use disorder (CUD) rg = 0.64, s.e. = 0.04; 
drinks per week rg = 0.36, s.e. = 0.02; OUD rg = 0.47, s.e. = 0.04). TUD 
clustered with addiction traits rather than consumption phenotypes 
(Supplementary Fig. 9).

TUD was also genetically associated with 59 other psychiatric and 
medical conditions (Fig. 5b and Supplementary Table 31). There were 
significant positive rg with psychiatric traits (for example, externalizing 
rg = 0.71, s.e. = 0.02; ADHD rg = 0.50, s.e. = 0.03; post-traumatic stress 
disorder rg = 0.31, s.e. = 0.08) and risky behavioural traits, including 
younger age of first sex (rg = −0.50, s.e. = 0.03). We also found posi-
tive rg with health outcomes (for example, coronary artery disease 
rg = 0.26, s.e. = 0.03; waist-to-hip ratio rg = 0.26, s.e. = 0.02; multisite 
chronic pain rg = 0.36, s.e. = 0.03) and several social determinants of 
health, such as the Townsend deprivation index (rg = 0.61, s.e. = 0.07). 
There were negative rg with socioeconomic variables, including edu-
cational attainment (rg = −0.53, s.e. = 0.02) and household income 
(rg = −0.49, s.e. = 0.03) and with intelligence (rg = −0.28, s.e. = 0.02). 
Conditioning on alcohol, cannabis or OUD did not substantially 
modify the magnitude or direction of these associations (Supple-
mentary Table 32). Virtually all rg estimates for other phenotypes 

were greater with TUD than CPD (Fig. 5c) and FTND (Fig. 5d) but not  
SmkInit (Fig. 5e).

Among AA samples, there were significant rg with smoking tra-
jectories and other substance use traits (OUD rg = 0.44, s.e. = 0.11; 
maximum habitual alcohol consumption rg = 0.77, s.e. = 0.19).

Phenome-wide association analyses
To further explore pleiotropic effects, we performed a series of 
phenome-wide association studies (PheWAS) of TUD polygenic 
scores (PGS) in other EHR and clinical cohorts of adults and a young 
population-based cohort. We performed these analyses within  
ancestries.

EHR cohorts. We conducted PheWAS with EHR data to test the asso-
ciation between polygenic risk for TUD and liability for thousands of 
other medical conditions, including TUD, in another independent 
site—the Mayo Clinic Biobank. As expected, TUD PGS was strongly asso-
ciated with TUD (P = 1.90 × 10−145; Supplementary Table 34 and Fig. 6a), 
explaining 7.3% of the (Nagelkerke’s R2) variance. Additional significant 
(P < 3.24 × 10−5) associations included four traits in the SUDs domain 
(for example, alcohol-related disorders, OR = 1.33, P = 6.30 × 10−26), 
ten psychiatric conditions (for example, depression, OR = 1.09, 
P = 4.31 × 10−11) and medical conditions strongly associated with TUD 
(for example, chronic airway obstruction, OR = 1.25, P = 1.60 × 10−32). 
Most of these associations remained significant after accounting for 
TUD diagnosis (Supplementary Table 34). We also noted associations 
across several other medical categories, including endocrine/meta-
bolic (for example, morbid obesity, OR = 1.12, P = 3.53 × 10−13; type 2 
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Fig. 4 | Sankey diagram showing drug-repurposing results from S-PrediXcan 
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medications that targeted at least one mapped/independent gene from our 
GWAS are plotted.

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-024-01851-6

diabetes, OR = 1.09, P = 1.48 × 10−9), digestive (for example, diseases 
of oesophagus, OR = 1.07, P = 1.47 × 10−10), circulatory (for example, 
ischaemic heart disease, OR = 1.09, P = 1.56 × 10−11) and neurologic (for 
example, pain, OR = 1.07, P = 4.33 × 10−8), among others (Supplemen-
tary Table 34). Compared to FTND PGS, TUD PGS were more strongly 
associated across virtually all domains, including TUD (Fig. 6a). After 
conditioning on PGS for other smoking variables (CPD, SmkInit and 
FTND), TUD PGS was still significantly associated with TUD and 14 other 
mental and medical traits (Supplementary Table 34). We repeated the 
TUD PGS analyses in a BioVU cohort of AA individuals using the TUD-AA 
meta-analysis results. As expected, TUD was the strongest (OR = 1.20, 
P = 2.81 × 10−6) association (Supplementary Table 35).

Yale-Penn sample. We next extended the analyses to a deeply char-
acterized sample recruited for genetic studies of SUDs—the Yale-Penn 
sample47. We examined the association between PGS for TUD and 
hundreds of other traits derived from a comprehensive psychiatric 
interview, the semi-structured assessment for drug dependence 
and alcoholism (SSADDA). TUD-EUR and TUD-AA PGS were strongly 
associated with nicotine dependence as defined via a Diagnostic and 
Statistical Manual of Mental Disorders (DSM) diagnosis in both the 
EUR (OR = 1.83, P = 3.51 × 10−49; Fig. 6b and Supplementary Table 36) 
and AA cohorts (OR = 1.13, P = 7.13 × 10−4), respectively, although the 
latter association did not survive multiple testing correction  

(Supplementary Table 37). In the EUR cohort, we also noted signifi-
cant associations between TUD-EUR PGS and 224 other phenotypes, 
including 162 in the substance-related domain (44 opioid-related, 
31 cocaine-related, 25 alcohol-related, 23 tobacco-related, 14 
sedative-related, 13 cannabis-related, 10 other and 2 stimulant-related) 
and 62 in other domains (13 medical, 34 psychiatric (9 PTSD, 11 depres-
sion, 7 antisocial personality, 3 suicide, 2 ADHD and 2 conduct dis-
order), 9 environmental and 6 demographic phenotypes). Again, 
compared to FTND PGS, TUD-EUR PGS was more strongly associated 
across virtually all domains, including nicotine dependence (Nagel-
kerke’s R2 = 0.101 versus 0.062; Supplementary Table 36). After condi-
tioning on PGS for other smoking variables (CPD, SmkInit and FTND), 
TUD PGS was still significantly associated with 11 smoking-related traits 
and 50 other mental and medical conditions (Supplementary Table 36), 
again emphasizing the value of collecting information on later stages 
of vulnerability or more severe phenotypes, such as TUD.

Adolescent brain cognitive development cohort. Last, we extended 
our polygenic analyses to a drug naive developmental sample 
(9–11 years of age at recruitment; analytic n = 62–5,556)—the adoles-
cent brain cognitive development (ABCD) cohort. We concentrated 
on 12 traits that showed significant genetic correlations in the adult 
samples (Supplementary Table 38 and Fig. 6c). Although tobacco expo-
sure was uncommon in this paediatric population (2.30% prevalence),  
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Fig. 5 | FDR-significant genetic correlations between TUD-EUR and 113 
complex traits, including smoking and related phenotypes. a, TUD consists 
of several components, progressing from experimental use to regular use, 
compulsive use, cessation and relapse. Therefore, high genetic correlations (rg) 
are to be expected between the age of smoking initiation (AgeSmkInit), smoking 
initiation (SmkInit), cigarettes per day (CPD), smoking cessation (SmkCess)13, 
nicotine dependence measured using the Fagerström test for nicotine 
dependence (FTND)27 and TUD (see Supplementary Table 31 for full results).  
b, Genetic correlations with an extended list of traits from publicly available 
GWAS. Traits with positive rg values are plotted above the line; traits with 
negative rg values below the line. All rg are significant using a 5% FDR correction 
for multiple testing. c–e, Systematic comparison of significant genetic 
correlation estimates between TUD and SmkInit (c), CPD (d) and FTND (e) 

reveals overlapping (black dots) and trait-specific (blue and yellow dots) 
relations between TUD and these other smoking phenotypes. The rg estimates 
were generally higher for TUD than CPD—even with a smaller sample size (TUD, 
n = 495,005; CPD, n = 784,353)—and FTND. On the contrary, rg were generally 
smaller for TUD than SmkInit, possibly because of the larger sample for SmkInit 
(n = 3,383,199) than TUD. Overall, these results indicate that these smoking 
behaviours, including SmkInit, CPD, FTND and TUD, represent both unique 
and interrelated polygenic influences, which are complementary to those 
associated with other complex behaviours and disorders at the genetic level. 
ADHD, attention-deficit hyperactivity disorder; PTSD, posttraumatic stress 
disorder; BMI, body mass index; HDL, high density lipoprotein; LDL, low density 
lipoprotein; OCD, obsessive compulsive disorder.
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externalizing behaviours, which emerge in childhood and are strong 
correlates of substance use, were available. After multiple testing 
correction, TUD PGS was significantly (P < 4.00 × 10−3) associated 
with externalizing behaviours (Child Behaviour Check List (CBCL) 
externalizing scores, β = 0.07, P = 1.21 × 10−6; CBCL ADHD scores, 
β = 0.06, P = 4.97 × 10−5), as well as internalizing (suicide attempt 
β = 0.05, P = 1.52 × 10−3; CBCL depression scores β = 0.05, P = 1.11 × 10−3); 

cognitive ability (β = 0.06, P = 8.35 × 10−6); neighbourhood depriva-
tion (β = 0.04, P = 1.05 × 10−3); and weight-related phenotypes (BMI 
β = 0.06, P = 1.61 × 10−5; weight β = 0.04, P = 2.77 × 10−3). Notably, these 
children were not chronically exposed to tobacco; therefore, we would 
speculate that these associations are not a consequence of smoking 
but rather may underlie overlapping genetic architectures among the 
traits studied that predate use of tobacco.

b

c

Exte
rn

ali
zin

g
BMI

Reduced cognitiv
e ab

ilit
y

ADHD

Suicide at
tempt

Depressi
on

Weight

Depriv
ati

on

Anxie
ty

Anxie
ty 

an
d depressi

on

Any p
ain

 la
st 

month
OCD

a

TUD PGS TUD PGS | FTND PGS, CPD PGS, SmkInit PGS NS

Yale-PennMayo

Chronic pain
Sepsis and SIRS

Asphyxia and hypoxaemia
Oesophagitis, GERD and related diseases

Other disorders of stomach and duodenum
Diseases of oesophagus

Screening for malignant neoplasms of the skin
Benign neoplasm of skin

Impacted cerumen
Presbyopia

Disorders of refraction and accommodation
Myopia

Chronic kidney disease
End-stage renal disease

Acute renal failure
Type 2 diabetes

Acidosis
Disorders of magnesium metabolism

Disorders of fluid,  electrolyte and acid–base balance
Obesity

Myocardial infarction
Peripheral vascular disease

Coronary atherosclerosis
Ischaemic heart disease

Abdominal aortic aneurysm
Hypertensive heart and/or renal disease

Hypertensive chronic kidney disease
Hypertension

Shortness of breath
Respiratory failure

Obstructive chronic bronchitis
Emphysema

Chronic airway obstruction
Mood disorders

Depression
Substance addiction and disorders

Other mental disorder
Alcoholism

Alcohol–related disorders
Tobacco use disorder

0 0.2 0.4

Beta

Truancy
Lifetime trauma

Household cigarette smokers
Substance use in household

Childhood adversity
Caregiver

Number of children
Household income

Employed
Education
Divorced

Ever injected stimulants
Sedatives use disorder

Liver disease
Number of emergency room visits

Outpatient psychiatric treatment
Inpatient psychiatric treatment
Post-traumatic stress disorder

High suicidal intent
Ever depressed

Cannabis use disorder
Cannabis dependence

Age of first use of cannabis
Sought treatment for cocaine

Cocaine use disorder
Cocaine dependence

Sought treatment for opioids
Opioid use disorder
Opioid dependence

Sought treatment for alcohol
Alcohol use disorder
Alcohol dependence

Age of first use of alcohol
Sought treatment for tobacco

Fagerstrom test for nicotine dependence
Age of first use of tobacco

>100 cigarettes lifetime
Tobacco dependence

–0.5 0 0.5 1.0

Beta

0

0.02

0.04

0.06

0.08

Be
ta

Externalizing behaviours
Weight-related
Cognitive
Internalizing behaviours
Deprivation
NS

Fig. 6 | Phenome-wide association studies of TUD PGS. a–c, TUD PGS PheWAS 
in the Mayo Clinic (a), Yale-Penn (b) and ABCD European (c) cohorts. Only 
selected Bonferroni-significant traits are shown. In a and b, association of TUD 
PGS (black) is conditioned on PGS for FTND, CPD and SmkInit (green). Values 

represent β and s.e. The exact values for each association and extended lists 
of traits can be found in Supplementary Tables 34, 36 and 38. The number of 
observations used in c is shown in Supplementary Table 38. NS, not significant.
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Bidirectional Mendelian randomization analyses
We used MR analyses to test directional causal relationships between 
significantly genetically correlated traits (n = 31) and TUD among 
EURs only resulting from the small sample size and limited statisti-
cal power in other populations (Supplementary Table 39). There was 
a positive causal effect of TUD on cross-disorder (inverse-variance 
weighted (IVW) β = 0.93, s.e. = 0.02, P = 5.06 × 10−10, 95% confidence 
interval (CI) = 0.64−1.22). Seven traits showed significant causal 
effects on TUD. Specifically, we observed a negative causal effect of 
education attainment (IVW β = −0.25, s.e. = 0.02, P = 2.02 × 10−39, 95% 
CI = −0.29–[−0.22]) and a positive causal effect of drinks per week 
(IVW β = 0.22, s.e. = 0.02, P = 8.53 × 10−28, 95% CI = 0.18–0.26), depres-
sion (IVW β = 0.09, s.e. = 0.01, P = 1.35 × 10−12, 95% CI = 0.06–0.11), BMI 
(IVW β = 0.10, s.e. = 0.01, P = 1.85 × 10−38, 95% CI = 0.08–0.11), external-
izing (IVW β = 0.48, s.e. = 0.02, P = 3.38 × 10−131, 95% CI = 0.44–0.52),  
opioid prescriptions (IVW β = 0.04, s.e. = 0.01, P = 2.33 × 10−5,  
95% CI = 0.02–0.06) and OUD (IVW β = 0.06, s.e. = 0.01, P = 1.70 × 10−7, 
95% CI = 0.04–0.08) on TUD.

Discussion
Uncovering the genetic underpinnings of individual differences in TUD 
liability can advance diagnosis, prevention and treatment efforts for a 
disorder of enormous public health significance. GWAS have uncovered 
several associations with tobacco use but findings for tobacco depend-
ence or disorder have been limited because of the difficulty of charac-
terizing large numbers of individuals using a gold-standard research 
or clinical diagnosis. Here, we present a multi-ancestry GWAS of TUD 
using data from EHR, as a complementary strategy for ascertainment. 
EHR-biobanks are the result of years of work recruiting, consenting 
and genotyping individuals. As a result, researchers can now conduct 
studies such as the one reported here, gathering data for 898,680 indi-
viduals in <4 months, to identify biology for disorders. The number of 
GWAS signals, enrichment in relevant pathways and tissues and genetic 
overlap with nicotine-related traits provide proof of principle that EHR 
can serve as a complementary tool to study TUD genetics.

Our findings demonstrate that TUD, as defined via EHR, was 
genetically correlated with traits derived from traditionally ascer-
tained cohorts, including nicotine dependence via FTND and SmkCess, 
providing clear evidence that the signal captured by TUD phecodes 
is valid. Of note, the genetic correlation between TUD and CPD was 
relatively modest (rg = 0.44), suggesting that the genetic architectures 
of consumption and misuse are only partially overlapping, consist-
ent with previous GWAS of alcohol and cannabis use and misuse (for 
example, refs. 23,26,48). This contrasts with earlier observations for 
FTND and CPD, for which the genetic correlation was almost at unity 
(rg = 0.95)27. This shows that TUD captures features beyond the fre-
quency of smoking or severity of nicotine dependence. Although FTND 
and TUD were more strongly genetically correlated (rg = 0.63), in gen-
eral, we observed that TUD PGS was more predictive of DSM-defined 
tobacco dependence and a plethora of comorbid traits in the Yale-Penn 
sample, than FTND PGS. The only exception was for smoke after wak-
ing, which was more strongly associated with FTND PGS, probably 
because time to first cigarette is one of the FTND items. TUD was 
highly correlated (rg = 0.81) with regular cigarette use (that is, smoking 
at least 100 cigarettes in a lifetime, previously referred to as ‘smok-
ing initiation’)13, which is expected as nicotine is a highly addictive 
substance, with 85% of smokers meeting criteria for TUD1,2. However, 
our polygenic findings demonstrate that TUD explains additional 
variance above and beyond that accounted for by other smoking traits 
(SmkInit, CPD and FTND). This emphasizes the need to measure the 
full spectrum of addiction liability49, from regular use to more severe 
phenotypes, such as TUD, to account for the distinct biological factors 
relevant at each stage.

Common SNPs were able to account for a fraction (12%) of the 
overall heritability of TUD (40–60%) as determined by previous 

family and twin studies9,11. The multi-ancestral meta-analysis identi-
fied 88 independent loci, 18 times the number previously reported for 
nicotine dependence27. These include corroborative support for the 
involvement of nicotinic acetylcholine receptor genes (CHRNA5-A3-B4, 
CHRNB2, CHRNA2 and CHRNA4), which have been consistently associ-
ated with smoking behaviours20, particularly in studies of self-reported 
CPD13. Other variants identified were in genes that modulate dopa-
minergic and glutamatergic neurotransmission, compromising 
reward-based learning and facilitating drug-seeking behaviour, and 
in BDNF, which is involved in memory consolidation processes50 and a 
well-studied candidate gene in addiction51. These and other candidates 
supported by TUD (for example, PDE4B) were genetically correlated 
with other addiction phenotypes36, emphasizing the shared neurobio-
logical mechanisms of addiction.

Downstream analyses prioritized genes and drug candidates that 
could be used for follow-up mechanistic studies in model organisms. 
Specifically, we identified ‘core’ genes that could be ‘pleiotropic hot-
spots’ associated with several traits. One was glutathione peroxidase-1 
(GPX1), which is involved in oxidative stress. Intriguingly, it has been 
reported that glutathione peroxidase-1 protects against lung inflam-
mation induced by smoking in mice and agents that mimic this action 
(for example, ebselen), which restore GPX1 activity in situations of 
extreme oxidative stress, can protect from lung inflammation induced 
by smoking52. Another was GMPPB, which has been associated with 
accelerated lung aging and e-cigarette smoking53. NT5C2 is involved 
in maintaining cellular nucleotide balance and was associated with 
schizophrenia54 and smoking behaviours in an exome-wide associa-
tion study55. These genes showed a consistent association based on 
colocalization analyses (here and previously56), suggesting that they 
could confer TUD risk by modulating regulated gene expression and 
protein abundance in the brain.

The enrichment of TUD in brain tissues further supports TUD as 
a brain disorder, long supported by neuroscience and more recently 
by genetics57. We provide suggestive evidence for the involvement of 
the cerebellum in TUD, along with other regions that have long been 
studied in relation to addiction such as the fronto-striatal loop, hip-
pocampus and amygdala58.

Genetic correlations revealed substantial levels of pleiotropy with 
traits that often co-occur with TUD, including other substance use and 
psychiatric disorders. These associations were particularly evident in 
the Yale-Penn sample47, which has comprehensive phenotypic data 
for SUDs. In adult patients from the Mayo Clinic, we replicated the 
associations with substance and other psychiatric disorders, extending 
them to medical disorders, such as HIV, heart disease and pain, some of 
which (for example, respiratory conditions) probably reflect chronic 
smoking. The positive associations between genetic liability for TUD 
and other outcomes, such as BMI and other internalizing/externalizing 
problems in tobacco-naive children (ABCD), may also reflect true bio-
logical relationships. Although we are far from untangling this complex 
web of genetic and non-genetic correlations, the extensive phenotypic 
spectrum associated with TUD is undeniable.

Currently, developing new therapeutics for TUD is viewed as risky 
because of a lack of high-quality targets, historically low success rates 
and unintended side effects. Although genes identified in our GWAS, 
including CHRNA5, CHRNA4 and CHRNB2, might moderate the effect 
of varenicline, a SmkCess treatment that operates as a partial agonist 
at the nicotine acetylcholine a2b4 receptor59, varenicline (along with 
other medications such as nicotine replacement therapies) has lim-
ited efficacy or adverse effects60,61. In a proof-of-principle study, ref. 
62 identified several repurposing candidates for treating psychiatric 
disorders by connecting imputed transcriptomic profiles from GWAS 
data to drug-induced gene expression profiles. Using this approach, 
we identified hundreds of potential drug candidates predicted to 
significantly reverse the TUD transcriptomic profile. These included 
norepinephrine re-uptake inhibitors (for example, amoxapine)  
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and antipsychotics (for example, clozapine), pointing to convergent 
molecular mechanisms between TUD and other psychiatric disorders 
which are the usual target of these agents, replicating previous obser-
vations63,64. The potential therapeutic utility of anti-inflammatory 
and blood glucose-lowering medications was also suggested by our 
analyses, in addition to an anti-Parkinson medication known to inter-
act with dopaminergic activity (biperiden) and one which acts both 
as an antagonist of acetylcholinesterase and an agonist of nicotinic 
receptors (galantamine), as shown in recent independent studies64,65. 
Although, so far, no repurposed drugs have been developed for treat-
ing SUDs on the basis of GWAS data, this is an important potential path 
forward, particularly for SUDs, where few effective pharmacotherapies 
are available.

Future research may address some of the limitations of our study. 
Previous work has demonstrated that ICD codes have a low sensitivity 
for current tobacco use but may have a reasonable specificity for this 
common behaviour66. Our results appeared to be robust to moderate 
levels of misclassification, particularly in controls, as detected by 
the pairing with self-reported questionnaire data. Our results also 
appeared to be robust to moderate levels of cross-cohort hetero-
geneity, including potential differences in diagnostic practices and 
different levels of misdiagnosis of control populations across sites. 
Although studies that systematically evaluate the effect of removing 
potentially misclassified individuals are needed, we chose not to 
remove them in this study because not all individuals had concomi-
tant survey data available. This questionnaire data, along with other 
forms of EHR data (for example, clinical notes), may help capture 
additional phenotypes, including the response to treatment or the 
ability to successfully quit smoking without formal treatment. We 
have highlighted potential differences of traits ascertained by ICD 
codes as a limitation of our study. The rg results revealed high levels 
of association between TUD and hundreds of other traits. However, 
the extent to which TUD shares biological underpinnings with other 
traits and diseases may also be influenced by potential misdiagnosis, 
ascertainment and cross-trait assortative mating, among many other 
factors67. Longitudinal data from EHR, with data collection span-
ning the period previous to and following the onset of substance 
use and SUD, are particularly valuable for studying the timing of 
onset, within-person change and application of time-varying effects, 
which will help to differentiate causation from correlational findings. 
The advent of single-cell transcriptomics, larger quantitative trait 
loci (QTL) databases in more specific cell types and the inclusion of 
more ancestrally diverse samples, as well as samples with varying 
sociocultural context from different geographic regions beyond the 
United States and United Kingdom, will improve the interpretability 
of associated loci. Although we have included diverse cohorts, our 
study lacked many major ancestral groups such as East Asians and 
South Asians. Furthermore, other forms of genetic variation, such 
as rare single variants68,69 or structural polymorphisms70, are likely to 
account for much of the ‘missing heritability’ in genetic risk for TUD. 
Last, tobacco use can be greatly affected by environmental factors12, 
such as cultural context, public health policies and characteristics 
related to socioeconomic status71. Together with the existing body 
of literature72–75, the strong genetic correlations between TUD and 
environmental influences, such as Townsend deprivation index, 
educational attainment and prenatal smoking, underscore the impor-
tance of considering environmental moderators in understanding the 
complex aetiology of TUD. There is a great need in the field, therefore, 
to systematically assess sociocultural factors in healthcare settings76.

In sum, this work demonstrates that EHR is a viable and cost- 
efficient complementary approach to rigorous clinical ascertainment 
for genetic studies of TUD, similar to other SUD traits. At various levels 
of analysis, this study identifies and prioritizes previously unidentified 
genes of potential interest. TUD shares biological processes common to 
many SUDs and is highly correlated with many psychiatric and medical 

disorders. We anticipate that these results can be combined with pre-
vious smoking GWAS in larger multivariate analyses to elucidate the 
full spectrum of smoking behaviours and accelerate gene discovery 
for TUD.

Methods
Ethics
This study complies with all relevant ethical regulations. The project 
was approved by the Institutional Review Board (IRB) from Vanderbilt 
University Medical Center (VUMC) (nos. 160302, 172020 and 190418), 
MGBB (no. 2018P002642), PMBB (no. 813913), the Central VA and 
site-specific IRBs (MVP) and the Mayo Clinic.

Smoking phenotypes and cohorts
We defined cases as patients who received at least two TUD ICD9 or 
ICD10 codes (corresponding to the phecode definition) in their medi-
cal records and controls as patients who had no TUD diagnosis codes 
(Supplementary Table 2). In UKBB only, cases were defined as having 
one ICD10 code for TUD and controls had none41. Additionally, we 
required controls to be 18 years of age or older at time of analysis (April 
2022). Patients younger than 18 years were excluded because they 
may not yet have reached the age of TUD diagnosis. We examined the 
sensitivity of our TUD phenotyping using the patients’ self-reported 
tobacco use via survey data when available (Supplementary Table 3, 
list of smoking traits).

Our data sources included registries from five health systems 
linked to biobanks: BioVU, MGBB, PMBB, MVP and UKBB. There were 
46,905 (EUR) patients from VUMC, 22,268 (EUR) patients from MGBB, 
39,087 patients from PMBB (28,999 EUR and 10,088 AA), 545,530 
patients from MVP (396,833 EUR, 104,332 AA and 44,365 LA) and 
244,890 participants from UKBB. Details of each registry, including 
demographics and data sources, are listed in Supplementary Table 2.

Genotyping, imputation and GWAS
For all cohorts, the initial GWAS analyses were conducted within 
genetic ancestral groups. Genetic ancestral groups were determined 
for BioVU77, MGBB and PMBB on the basis of principal component 
analysis78 and comparison to known ancestries in the 1000 Genomes 
Project Phase 3 (ref. 79) reference panel. In MVP, genetic ancestral 
groups were determined by harmonizing genetic ancestry and 
self-identified ancestry (HARE)80, which also defines genetic ances-
try on the basis of the 1000 Genomes reference panel. Further details 
on genotyping, phasing and imputation81 for each site are included 
in the Supplementary Information. GWAS analyses were performed 
within each ancestral group using SAIGE v.0.44.6.5 (ref. 82) or PLINK 
v.2.0 (refs. 83,84) and a logistic regression. For the BioVU (7,167 cases 
and 39,738 controls), MGBB (6,708 cases and 15,560 controls) and 
UKBB (10,287 cases and 234,603 controls) cohorts, there were GWAS 
for only the EUR ancestral group. In PMBB, in addition to the EUR 
sample (3,088 cases and 25,911 controls) we conducted an additional 
GWAS of the African ancestral group sample (1,722 cases and 8,366 
controls). In MVP, in addition to the EUR sample (146,771 cases and 
250,062 controls), we performed additional GWAS of the AA (43,743 
cases and 60,589 controls) and the LA (12,277 cases and 32,088 con-
trols) ancestral groups. Each of the univariate GWAS covaried for 
ten genetic ancestry principal components (PC), age, sex, number 
of ICD codes and length of record. The summary statistics for TUD 
in UKBB were downloaded from the GWAS atlas (https://atlas.ctglab.
nl/traitDB/3439).

SNP heritability
We estimated h2

SNP based on the liability scale (population prevalence 
estimates of 0.125) for common SNPs mapped to HapMap3 (ref. 85) 
using LDSC46. For AA and LA, we created in-sample linkage disequilib-
rium (LD) scores derived from the MVP genotype data using cov-LDSC86.
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Meta-analyses and independent variants
Meta-analyses were conducted using a sample-size weighted method in 
METAL87, assuming shared risk effects across ancestries. Effective sam-
ple sizes (neff), calculated using the formula: 4/(1/n_case + 1/n_control), 
were used to compensate for the imbalance in the ratio of cases to con-
trols. neff were used in all meta-analyses and all downstream analyses.

We conducted five meta-analyses of TUD GWAS summary statis-
tics across the following datasets: (1) within-ancestry meta-analysis 
for EUR samples in BioVU, MGBB, PMBB, MVP and an additional 
meta-analysis including UKBB, (2) within-ancestry meta-analysis for 
AA in MVP and Penn and (3) multi-ancestry meta-analysis across EUR 
(BioVU, MGBB, PMBB and MVP), AA (PMBB and MVP) and LA (MVP) 
datasets and an additional meta-analysis including UKBB. Inflation of 
test statistics due to polygenicity or cryptic relatedness was assessed 
using the LDSC attenuation ratio ((LDSC intercept − 1)/(mean of asso-
ciation chi-square statistics − 1)). Resulting GWS loci were defined 
as those with P < 5.00 × 10−8 with LD r2 > 0.1, within a 1 Mb window, 
based on the structure of the Haplotype Reference Consortium (HRC) 
multi-ancestry reference panel for the multi-ancestry meta-analysis 
or the HRC ancestry-appropriate reference panel otherwise. GWS loci 
were examined for heterogeneity across cohorts via the I2 inconsist-
ency metric.

To identify TUD risk loci and lead SNPs, we performed LD clump-
ing in FUMA41 using a range of 3 Mb, r2 > 0.1 and the respective ancestry 
1000 Genome phase 3 reference panel79. Genomic risk loci that were 
located <1 Mb apart were incorporated into a single locus. For loci 
that harboured several variants, we used COJO in GCTA88 to define 
independent variants by conditioning them on the most significant 
variant within each locus. Following conditioning, significant variants 
(P < 5.00 × 10−8) were considered independent.

We determined credible variants among the independent variants 
by merging risk variants within 1 Mb of the lead variant and fine-mapped 
the resulting region with 95% credible sets using FINEMAP89. Posterior 
inclusion probability ranges from 0 to 1 with values closer to 1 indicating 
greater causal probability. We implicated a putative causal variant if it 
accounted for >50% of the posterior probability in the 95% credible set.

Multi-ancestry fine-mapping analyses
We used PAINTOR v.3.1 (ref. 90) to perform multi-ancestry fine map-
ping for the two risk loci identified in both the TUD-EUR and TUD-AA 
metaGWAS. For each locus, we extracted SNPs with an absolute value 
of Z-score >3.9 within a 1 Mb region of the lead SNP. As suggested by 
PAINTOR, we created the AA and EUR LD matrices using the 1000 
Genome phase 3 reference panel79. We calculated the probability of 
each SNP being the causal variant, assuming that each locus has two 
causal variants.

Gene-based and pathway analyses
We conducted bioannotation and bioinformatic analyses to further 
characterize the loci identified by the TUD GWAS (Supplementary 
Methods). We used the default version (v.1.3.6a) of the FUMA web-based 
platform41 to identify independent SNPs (r2 < 0.10) and to study their 
functional consequences. We also used MAGMA v.1.08 (refs. 41,42) 
to perform competitive gene set and pathway analyses. SNPs were 
mapped to 19,532 protein-coding genes from Ensembl (build 85). We 
applied a Bonferroni correction based on the total number of genes 
tested (P < 2.63 × 10−6). Gene sets were obtained from Msigdb v.7.0 
(‘Curated gene sets’ and ‘GO terms’). We also used Hi-C coupled MAGMA 
(H-MAGMA43) to assign non-coding (intergenic and intronic) SNPs to 
genes on the basis of their chromatin interactions. Exonic and pro-
moter SNPs were assigned to genes on the basis of physical position. 
H-MAGMA uses four Hi-C datasets, which were derived from fetal brain, 
adult brain, iPSC-derived neurons and iPSC-derived astrocytes (https://
github.com/thewonlab/H-MAGMA). We applied a Bonferroni correction  
based on the total number of gene–tissue pairs tested (P < 9.44 × 10−7).

S-MultiXcan/S-PrediXcan
We used S-MultiXcan v.0.7.0 (an extension of S-PrediXcan v.0.6.2; 
ref. 44) to identify specific expression QTL-linked genes associated 
with TUD. This approach uses genetic information to predict tran-
script abundance in 13 brain tissues and tests whether the predicted 
transcripts correlate with TUD. S-PrediXcan uses precomputed tis-
sue weights from the genotype–tissue expression (GTEx) v.8 project 
database (https://www.gtexportal.org/) as the reference transcriptome 
dataset. For S-PrediXcan and S-MultiXcan analyses, we chose to use 
sparse (elastic net) prediction models, which are available at http:// 
predictdb.hakyimlab.org/. We applied a conservative Bonferroni cor-
rection based on the total number of gene–tissue pairs tested (14,198 
gene–tissue pairs tested; P < 3.52 × 10−6).

PWAS/TWAS
To identify proteins whose genetically regulated expression is associ-
ated with TUD, we performed PWAS analyses by integrating TUD GWAS 
summary statistics and precomputed protein QTLs from discovery 
(Banner)91,92 and validation (ROSMAP)93,94 datasets using the FUSION 
pipeline (http://gusevlab.org/projects/fusion/)45. Next, TWAS was 
performed using gene and splicing expression profiles measured in 
the adult dorsolateral prefrontal cortex and gene expression profiles 
from the frontal cortex. Human brain transcriptome data, used as 
expression reference panels, were obtained from the CMC93 and GTEx 
frontal cortex v.7 (refs. 45,95). All tests were Bonferroni corrected for 
multiple testing (α = 0.05/n genes tested).

Of the overlapping findings across independent TWAS or PWAS 
datasets, colocalization analysis (in FUSION45,96) was used to determine 
whether SNPs mediate the association with TUD via effects on gene and 
protein expression. A posterior colocalization probability of 80% was 
used to indicate a shared causal signal.

Partitioning heritability enrichment
We used LDSC to partition TUD-EUR h2

SNP and examined the enrichment 
on the basis of several functional genomic annotation models97,98. In 
the baseline model, we examined 75 overlapping functional anno-
tations comprising genomic, epigenomic and regulatory features. 
We also analysed ten overlapping cell-type groups derived from 220 
cell-type-specific annotations in four histone marks: methylated his-
tone H3 Lys4 (H3K4me1), trimethylated histone H3 Lys4 (H3K4me3), 
acetylated histone H3 Lys4 (H3K4ac) and H3K27ac. Enriched cell-type 
categories were analysed on the basis of annotations obtained from 
H3K4me1-imputed, gapped peak data generated by the Roadmap 
Epigenomics Mapping Consortium99. We removed multi-allelic and 
major histocompatibility complex region variants and only report 
categories enriched after Bonferroni correction.

Tissue enrichment analysis
We used the LDSC package to conduct cell-type-specific heritability 
analysis98. In this analysis, we applied stratified LD score regression 
on the TUD-EUR meta-analysis summary statistics with sets of specifi-
cally expressed genes in various tissues from GTEx95,100,101 to identify 
TUD-relevant tissues. We applied a conservative Bonferroni correction 
based on the number of tissues simultaneously tested (205 tissues 
tested, P < 2.44 × 10−4). We also used MAGMA v.1.08 gene–property 
analysis of expression data from GTEx (54 tissue types) and BrainSpan 
(29 brain samples at different age) in FUMA v.1.3.6a (ref. 102) to test the 
relationships between tissue-specific gene expression profiles and 
TUD-gene associations.

Cell-type-specific expression of TUD risk genes
We performed cell-type-specific analyses implemented in FUMA, using 
data from nine scRNA-seq datasets from human brain (datasets listed 
in the Supplementary Information). The method uses MAGMA gene–
property analysis to test for association between cell-specific gene 
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expression and TUD-gene association41. Conditional analyses for multi-
ple testing are applied to correct for all tested cell types across datasets.

BrainXcan
We used the BrainXcan package (https://github.com/hakyimlab/ 
brainxcan)103 to predict the association between the TUD phenotype 
and brain features. This approach uses genetically determined brain 
image-derived phenotypes (IDPs) to test brain region association with 
the TUD phenotype via linear regression. IDPs were constructed by 
training genetic predictors on original IDPs from magnetic resonance 
imaging via ridge regression103. IDPs were retrieved from the BrainX-
can database (https://zenodo.org/record/4895174). Only significant 
IDP associations with TUD that survived a Bonferroni correction are 
reported (93 IDPs tested; P < 1.92 × 10−4).

Drug repurposing
Our signature matching technique used data from the LINCs L1000 
database. The LINCs L1000 database catalogues in vitro gene expres-
sion profiles (signatures) from thousands of compounds in >80 human 
cell lines (level 5 data from phase I GSE92742 and phase II GSE70138). We 
selected compounds that were currently FDA approved or in clinical tri-
als (via https://clue.io/repurposing#download-data; updated 24 March 
2020). Our analyses included signatures of 829 chemical compounds 
(590 FDA approved, 239 in clinical trials) in five neuronal cell lines (NEU, 
NPC, MNEU.E, NPC.CAS9 and NPC.TAK), a total of 3,897 signatures.

We matched in vitro medication signatures with TUD signa-
tures from brain tissue transcriptome-wide association analyses 
(conducted using S-PrediXcan). This consisted of amygdala, ante-
rior cingulate cortex BA24, caudate basal ganglia, cerebellar hemi-
sphere, cerebellum, cortex, frontal cortex BA9, hippocampus, 
hypothalamus, nucleus accumbens basal ganglia, putamen basal 
ganglia, substantia nigra and pituitary brain regions. We computed 
weighted Pearson correlations between transcriptome-wide brain 
associations and in vitro L1000 compound signatures36, weight-
ing each gene by its proportion of heritability explained, using the 
metafor package (v.3.8-1) in R. We treated each L1000 compound as 
a fixed effect incorporating the effect size (rweighted) and sampling 
variability (se2r_weighted) from all signatures of a compound (for 
example, across all time points, cell lines and doses). Brain region 
was included as a random effect to account for any tissue-specific 
heterogeneity. Both the genes for the transcriptome-wide association 
analysis input and the medications from our drug repurposing analyses 
were required to survive a Bonferroni correction for multiple testing 
(transcriptome-wide correction = 0.05/14,199 = 3.52 × 10−6; Perturba-
gen correction = 0.05/3,897 = 1.28 × 10−5).

We applied an additional drug repositioning method, DRUG-
SETS104. Data were drawn from the Clue Repurposing Hub and the Drug 
Gene Interaction Database. Drug–gene sets were created for 1,201 drugs 
with genes whose protein products are targeted by or interact with 
that specific drug. Competitive gene set analysis was performed using 
MAGMA v.1.08 (refs. 41,42) while conditioning on a gene set of all drug 
target genes in the data (n = 2,281) to test for significant associations 
between drug–gene sets and TUD. We applied a Bonferroni correction 
for the number of drug–gene sets tested (P < 0.05/735 = 6.80 × 10−5).

Genetic correlation analyses
We estimated the within-ancestry rg for TUD using LDSC46 and the 
cross-ancestry rg for TUD across population groups using POPCORN46. 
We used the ancestry-specific 1000 Genomes Project phase 3 (ref. 80) 
data as the LD references.

We used local LDSC46 to calculate genetic correlations (rg) between 
TUD and 113 other traits or diseases46. Local traits were selected on the 
basis of previously known phenotypic associations between TUD and 
other SUD phenotypes and related traits (for example, CUD and various 
measures of impulsivity). We used the standard Benjamini–Hochberg 

FDR correction (FDR 5%) to correct for multiple testing. We also cal-
culated a Bonferroni correction for 113 comparisons (P < 4.42 × 10−4); 
however, this correction is overly conservative because many of the 
traits tested are highly correlated with one another. For AA individuals, 
we calculated rg between TUD and 11 published traits using in-sample 
LD scores derived from the MVP genotype data using cov-LDSC86.

mtCOJO
We used mtCOJO105 to individually condition the TUD-EUR summary 
statistics on loci associated with other comorbid traits, including alco-
hol dependence, CUD and OUD. This analysis allowed us to examine 
whether the genetic associations with TUD would be preserved when 
controlling for those covariate phenotypes. To test as many SNPs while 
preserving computational efficiency, we used P value thresholds of 
5.00 × 10−6, 5.00 × 10−8, 5.00 × 10−6, respectively, for alcohol depend-
ence, CUD and OUD. We then computed genetic correlations using 
the TUD summary statistics adjusted for the covariates of interest.

Unsupervised learning to determine TUD clustering
Previous studies have shown that consumption and misuse/depend-
ence phenotypes have a distinct genetic architecture. To explore 
whether the TUD meta-analysis clustered more with consumption 
or misuse/dependence phenotypes, we used a data-driven unsuper-
vised machine learning method known as agglomerative hierarchical 
clustering analysis (HCA)106. HCA forms clusters iteratively by creating 
groups and successively joining or splitting those groups on the basis 
of a prespecified algorithm106. Agglomerative nesting (AGNES) is a 
bottom-up process focused on individual traits to structure. Agglom-
erative clustering was chosen as this allowed us to compare different 
algorithms to maximize for the dissimilarity on each branch, with 
Ward’s minimum variance method performing best. All models were 
fit in R using the cluster package (v.2.1.4)106.

The product of HCA is a dendrogram, formed with several brackets 
called ‘branches’. Phenotypes on the same branch are more similar to 
each other on the basis of their pairwise genetic associations with each 
other and with all other phenotypes on that branch. Branches can form 
sub-branches of more specific clustering. The genetic correlations of 
former smoker and smoking initiation were reversed to show the intui-
tive effects against the other traits in the dendrogram.

Phenome-wide association studies
Mayo Clinic Biobank. We performed a PheWAS in the Mayo Clinic 
Biobank107. Phecodes were ascertained using EHR data from 57,001 
patients from the Mayo Clinic Biobank. Genotyping details are included 
in the Supplementary Information. PGS were calculated using LDpred2 
(ref. 108) using the auto feature in the bigsnpr (v.1.10.4) R package. To 
evaluate the unique contribution of polygenic scores for TUD in rela-
tion to other smoking behaviours, we calculated PGS for SmkInit, CPD13 
and FTND27 and ran additional PheWAS of TUD covarying for SmkInit, 
CPD and FTND PGS.

Yale-Penn. We performed PheWAS in the Yale-Penn sample47; which 
is a genotyped109 and deeply phenotyped cohort using the SSADDA, a 
detailed psychiatric instrument used to assess physical, psychosocial 
and psychiatric manifestations of SUDs and comorbid psychiatric 
traits110,111. This comprehensive interview includes more than 3,500 
items representing lifetime diagnostic criteria for the DSM-IV (ref. 112), 
DSM-5 (ref. 113) SUDs and DSM-IV (ref. 112) psychiatric disorder history.

PGSs were calculated using PRS-Continuous shrinkage software 
(PRS-CS)114. We used the default setting in PRS-CS to estimate the shrink-
age parameters and fixed the random seed to 1 for reproducibility. To 
identify associations between the PGS for TUD and clinical pheno-
types, we performed a PheWAS by fitting logistic regression models 
for binary phenotypes and linear regression models for continuous 
phenotypes. Analyses were conducted using the PheWAS v.0.12 R 
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package115 adjusting for sex, median age and the first ten PCs within 
each genetic ancestry. We performed sensitivity analyses by covarying 
for SmkInit, CPD13 and FTND27 PGS. Bonferroni correction was applied 
for each ancestral-specific analysis to account for multiple testing 
(P < 7.25 × 10−5).

Adolescent brain cognitive development. We performed polygenic 
analyses in the ABCD sample116. Again using PRS-CS117, we fitted a fixed 
effects model in the ABCD European subsample (wave 3 for phenotypes 
and wave 3 for genotypes), controlling for first ten PCs, age, sex, site, as 
fixed effect covariates and family ID as random effects covariates. We 
included 12 measures which showed significant rg in the adults datasets 
and were available in this cohort; these included two binary phenotypes 
(pain, ‘any pain last month’; and suicide attempt, ‘description’) and 
ten continuous measures (from CBCL118—‘CBCL Externalizing’, ‘CBCL 
ADHD’, ‘CBCL Depression’, ‘CBCL AnxDep’; ‘CBCL AnxDis’; ‘CBCL OCD’; 
cognitive ability via the National Institutes of Health (NIH) cognitive 
toolbox total score119; BMI; weight; deprivation). Results were corrected 
for multiple testing (P < 4.0 × 10−3). Additional genotyping, quality 
control and statistical details are described in the Supplementary 
Information.

Mendelian randomization
Two-sample MR120,121 was used to evaluate the potential causal associa-
tion between TUD and genetically correlated traits using samples of 
EUR ancestry only (without UKBB). Of the 76 traits that showed signifi-
cant genetic correlations (Supplementary Table 31), we removed 45 that 
were phenotypically similar (for example, BMI and obesity). From each 
category, we selected those traits with higher rg. Therefore, we tested 
31 traits for a causal relationship with TUD. We inferred causality bidi-
rectionally using three methods: weighted median, IVW and MR-Egger, 
followed by a pleiotropy test using the MR-Egger intercept122,123. Instru-
mental variants were those associated with the exposure after clumping 
(r2 = 0.01) and at P < 1.0 × 10−5. We considered causal effects as those for 
which at least two MR tests were significant after Bonferroni correction 
(P = 0.05/31 = 1.61 × 10−3) and that showed no evidence of violation of 
the horizontal pleiotropy test (MR-Egger intercept P > 0.05).

Statistics and reproducibility
All statistical analyses performed as part of this study have been 
described in the Methods. No statistical method was used to prede-
termine sample size. Randomization and blinding did not apply.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Summary statistics can be accessed at the PsycheMERGE website 
(https://psychemerge.com) or by emailing the corresponding author 
(sanchezroige@ucsd.edu). The following datasets were retrieved 
for secondary analyses: Ensembl build 85 (https://www.ebi.ac.uk/
about/news/updates-from-data-resources/ensembl-version-85/), 
Msigdb v.7.0 (https://data.broadinstitute.org/gsea-msigdb/msigdb/
release/7.0/), Genotype–Tissue Expression (GTEx) v.8 project database 
(https://www.gtexportal.org/), PredictDB Data Repository (http://
predictdb.hakyimlab.org/), BrainQTL (http://predictdb.hakyimlab.
org/), BrainXcan database (https://zenodo.org/record/4895174), 
LINCs L1000 database (https://commonfund.nih.gov/LINCS), Drug 
Gene Interaction Database (https://repo-hub.broadinstitute.org/
repurposing#download-data), 1000 Genomes Project phase 3 (https://
internationalgenome.org/data-portal/sample), BrainSpan (http://
www.brainspan.org/), H-MAGMA four Hi-C datasets provided with 
the software (https://github.com/thewonlab/H-MAGMA/tree/master/
Input_Files) and PredictDB Data Repository (http://predictdb.org/).

Code availability
All software used to generate results has been previously published 
and corresponding citations are provided in Methods; that is, SAIGE 
v.0.44.6.5, PLINK v.1.9/v.2.080, LDSC v.1.0.1, cov-LDSC (https://github.
com/yang-luo-lab/cov-ldsc), METAL 2020-05-05 (https://github.com/
statgen/METAL), FUMA v.1.3.6a (https://fuma.ctglab.nl/), COJO in GCTA 
v.1.94.1, FINEMAP v.1.4.2, PAINTOR v.3.1, MAGMA v.1.08, H-MAGMA 
v.1.08, S-MultiXcan v.0.7.0, S-PrediXcan v.0.6.2, BrainXcan (https://
github.com/hakyimlab/brainxcan), metafor package (v.3.8-1), DRUG-
SETS (https://github.com/nybell/drugsets), POPCORN (https://github.
com/brielin/Popcorn), mtCOJO in GCTA v.1.94.1, cluster package v.2.1.4, 
PheWAS package v.0.12, LDpred2 from the bigsnpr package v.1.10.4, 
PRS-CS/PRS-CSx v.1.0.0 (https://github.com/getian107) and Mende-
lianRandomization package v.0.9.0.
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