Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The neuroanatomy of developmental language disorder: a systematic review and meta-analysis

Abstract

Developmental language disorder (DLD) is a common neurodevelopmental disorder with adverse impacts that continue into adulthood. However, its neural bases remain unclear. Here we address this gap by systematically identifying and quantitatively synthesizing neuroanatomical studies of DLD using co-localization likelihood estimation, a recently developed neuroanatomical meta-analytic technique. Analyses of structural brain data (22 peer-reviewed papers, 577 participants) revealed highly consistent anomalies only in the basal ganglia (100% of participant groups in which this structure was examined, weighted by group sample sizes; 99.8% permutation-based likelihood the anomaly clustering was not due to chance). These anomalies were localized specifically to the anterior neostriatum (again 100% weighted proportion and 99.8% likelihood). As expected given the task dependence of activation, functional neuroimaging data (11 peer-reviewed papers, 414 participants) yielded less consistency, though anomalies again occurred primarily in the basal ganglia (79.0% and 95.1%). Multiple sensitivity analyses indicated that the patterns were robust. The meta-analyses elucidate the neuroanatomical signature of DLD, and implicate the basal ganglia in particular. The findings support the procedural circuit deficit hypothesis of DLD, have basic research and translational implications for the disorder, and advance our understanding of the neuroanatomy of language.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRISMA flowchart showing the process of identifying the 42 papers included in the meta-analyses.
Fig. 2: Proportions of DLD participant groups, weighted by sample sizes, that showed structural anomalies in each brain (sub)structure (shown as percentages).
Fig. 3: Proportions of DLD participant groups, weighted by sample sizes, that showed structural anomalies in the neostriatum after subdividing it.
Fig. 4: Proportions of DLD participant groups, weighted by sample sizes, that showed functional imaging anomalies in each brain (sub)structure (shown as percentages).

Similar content being viewed by others

Data availability

A spreadsheet presenting the coded data for our primary analyses (that is, the data from the 22 papers that examined the structural neuroanatomy of DLD, and the 11 papers that examined functional imaging in DLD), together with accompanying documentation, is available in Open Science Framework (https://osf.io/3bpa4/).

Code availability

Analysis code will be provided upon request.

References

  1. Diagnostic and Statistical Manual of Mental Disorders: DSM-5 5th edn (American Psychiatric Association, 2013).

  2. Bishop, D. V. M., Snowling, M. J., Thompson, P. A., Greenhalgh, T. & CATALISE-2 consortium Phase 2 of CATALISE: a multinational and multidisciplinary Delphi consensus study of problems with language development: terminology. J. Child Psychol. Psychiatry 58, 1068–1080 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Leonard, L. B. Children with Specific Language Impairment 2nd edn (MIT Press 2014).

  4. Boyle, C. A. et al. Trends in the prevalence of developmental disabilities in US children, 1997–2008. Pediatrics 127, 1034–1042 (2011).

  5. Shaywitz, S. E., Shaywitz, B. A., Fletcher, J. M. & Escobar, M. D. Prevalence of reading disability in boys and girls. Results of the Connecticut Longitudinal Study. JAMA 264, 998–1002 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Tomblin, J. B. et al. Prevalence of specific language impairment in kindergarten children. J. Speech Lang. Hear. Res. 40, 1245–1261 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Clegg, J., Hollis, C., Mawhood, L. & Rutter, M. Developmental language disorders — a followup in later adult life. Cognitive, language and psychosocial outcomes. J. Child Psychol. Psychiatry 46, 128–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Conti-Ramsden, G. & Durkin, K. Phonological short-term memory, language and literacy: developmental relationships in early adolescence in young people with SLI. J. Child Psychol. Psychiatry 48, 147–156 (2007).

    Article  PubMed  Google Scholar 

  9. Whitehouse, A. J., Line, E., Watt, H. J. & Bishop, D. V. Qualitative aspects of developmental language impairment relate to language and literacy outcome in adulthood. Int. J. Lang. Commun. Disord. 44, 489–510 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Adelman, P. & Vogel, S. in Learning About Learning Disabilities (ed. Wong, B.) 657–701 (Academic Press, 1998).

  11. Ruben, R. J. Redefining the survival of the fittest: communication disorders in the 21st century. Laryngoscope 110, 241 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Hulme, C. Developmental Disorders of Language Learning and Cognition (Wiley-Blackwell, 2009).

  13. Montgomery, J. W., Gillam, R. B. & Evans, J. L. Syntactic versus memory accounts of the sentence comprehension deficits of sp|ecific language impairment: looking back, looking ahead. J. Speech Lang. Hear. Res. 59, 1491–1504 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pauls, L. J. & Archibald, L. M. Executive functions in children with specific language impairment: a meta-analysis. J. Speech Lang. Hear. Res. 59, 1074–1086 (2016).

    Article  PubMed  Google Scholar 

  15. Ullman, M. T., Earle, F. S., Walenski, M. & Janacsek, K. The neurocognition of developmental disorders of language. Annu. Rev. Psychol. 71, 389–417 (2020).

    Article  PubMed  Google Scholar 

  16. Ullman, M. T. & Pierpont, E. I. Specific language impairment is not specific to language: the procedural deficit hypothesis. Cortex 41, 399–433 (2005).

    Article  PubMed  Google Scholar 

  17. Bishop, D. V. M. Cerebral asymmetry and language development: cause, correlate, or consequence? Science 340, 1230531 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liégeois, F., Mayes, A. & Morgan, A. Neural correlates of developmental speech and language disorders: evidence from neuroimaging. Curr. Dev. Disord. Rep. 1, 215–227 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mayes, A. K., Reilly, S. & Morgan, A. T. Neural correlates of childhood language disorder: a systematic review. Dev. Med. Child Neurol. 57, 706–717 (2015).

    Article  PubMed  Google Scholar 

  20. Morgan, A., Bonthrone, A. & Liégeois, F. J. Brain basis of childhood speech and language disorders: are we closer to clinically meaningul MRI markers? Curr. Opin. Pediatr. 28, 725–730 (2016).

    Article  PubMed  Google Scholar 

  21. Schwartz, R. G. & Shafer, V. L. in The Handbook of the Neuropsychology of Language Vols 1–2 (ed. Faust, M.) 847–867 (Wiley-Blackwell, 2012).

  22. van der Lely, H. K. & Pinker, S. The biological basis of language: insight from developmental grammatical impairments. Trends Cogn. Sci. 18, 586–595 (2014).

    Article  PubMed  Google Scholar 

  23. Webster, R. I. & Shevell, M. I. Neurobiology of specific language impairment. J. Child Neurol. 19, 471–481 (2004).

    Article  PubMed  Google Scholar 

  24. Clark, M. M. & Plante, E. Morphology of the inferior frontal gyrus in developmentally language-disordered adults. Brain Lang. 61, 288–303 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. De Fosse, L. et al. Language-association cortex asymmetry in autism and specific language impairment. Ann. Neurol. 56, 757–766 (2004).

    Article  PubMed  Google Scholar 

  26. Ellis Weismer, S., Plante, E., Jones, M. & Tomblin, J. B. A functional magnetic resonance imaging investigation of verbal working memory in adolescents with specific language impairment. J. Speech Lang. Hear. Res. 48, 405–425 (2005).

    Article  PubMed  Google Scholar 

  27. Gauger, L. M., Lombardino, L. J. & Leonard, C. M. Brain morphology in children with specific language impairment. J. Speech Lang. Hear. Res. 40, 1272–1284 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Kurth, F. et al. Altered gray matter volumes in language‐associated regions in children with developmental language disorder and speech sound disorder. Dev. Psychobiol. 60, 814–824 (2018).

    Article  PubMed  Google Scholar 

  29. Leonard, C. M. et al. Anatomical risk factors that distinguish dyslexia from SLI predict reading skill in normal children. J. Commun. Disord. 35, 501–531 (2002).

    Article  PubMed  Google Scholar 

  30. Preis, S., Engelbrecht, V., Huang, Y. & Steinmetz, H. Focal grey matter heterotopias in monozygotic twins with developmental language disorder. Eur. J. Pediatr. 157, 849–852 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Plante, E., Boliek, C., Mahendra, N., Story, J. & Glaspey, K. Right hemisphere contribution to developmental language disorder: neuroanatomical and behavioral evidence. J. Commun. Disord. 34, 415–436 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Jackson, T. & Plante, E. Gyral morphology in the posterior Sylvian region in families affected by developmental language disorder. Neuropsychol. Rev. 6, 81–94 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Jernigan, T. L., Hesselink, J. R., Sowell, E. & Tallal, P. A. Cerebral structure on magnetic resonance imaging in language-and learning-impaired children. Arch. Neurol. 48, 539–545 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Plante, E., Swisher, L., Vance, R. & Rapcsak, S. MRI findings in boys with specific language impairment. Brain Lang. 41, 52–66 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Preis, S., Jancke, L., Schittler, P., Huang, Y. & Steinmetz, H. Normal intrasylvian anatomical asymmetry in children with developmental language disorder. Neuropsychologia 36, 849–855 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Hodge, S. M. et al. Cerebellum, language, and cognition in autism and specific language impairment. J. Autism Dev. Disord. 40, 300–316 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pigdon, L. et al. Grey matter volume in developmental speech and language disorder. Brain Struct. Funct. 224, 3387–3398 (2019).

    Article  PubMed  Google Scholar 

  38. Krishnan, S. et al. Functional organisation for verb generation in children with developmental language disorder. Neuroimage 226, 117599 (2021).

    Article  PubMed  Google Scholar 

  39. Krishnan, S., Watkins, K. E. & Bishop, D. V. Neurobiological basis of language learning difficulties. Trends Cogn. Sci. 20, 701–714 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lee, J. C., Mueller, K. L. & Tomblin, J. B. Examining procedural learning and corticostriatal pathways for individual differences in language: testing endophenotypes of DRD2/ANKK1. Lang. Cogn. Neurosci. 31, 1098–1114 (2016).

    Article  PubMed  Google Scholar 

  41. Lee, J. C., Nopoulos, P. C. & Tomblin, J. B. Abnormal subcortical components of the corticostriatal system in young adults with DLI: a combined structural MRI and DTI study. Neuropsychologia 51, 2154–2161 (2013).

    Article  PubMed  Google Scholar 

  42. Badcock, N. A., Bishop, D. V. M., Hardiman, M. J., Barry, J. G. & Watkins, K. E. Co-localisation of abnormal brain structure and function in specific language impairment. Brain Lang. 120, 310–320 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hage, S. Rd. V. et al. Specific language impairment: linguistic and neurobiological aspects. Arq. Neuropsiquiatr. 64, 173–180 (2006).

    Article  Google Scholar 

  44. Herbert, M. R. et al. Brain asymmetries in autism and developmental language disorder: a nested whole-brain analysis. Brain 128, 213–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Lee, J. C., Dick, A. S. & Tomblin, J. B. Altered brain structures in the dorsal and ventral language pathways in individuals with and without developmental language disorder (DLD). Brain Imaging Behav. https://doi.org/10.1007/s11682-019-00209-1 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Soriano‐Mas, C. et al. Age‐related brain structural alterations in children with specific language impairment. Hum. Brain Mapp. 30, 1626–1636 (2009).

    Article  PubMed  Google Scholar 

  47. Turkeltaub, P. E., Eden, G. F., Jones, K. M. & Zeffiro, T. A. Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16, 765–780 (2002).

    Article  PubMed  Google Scholar 

  48. Turkeltaub, P. E. et al. Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Hum. Brain Mapp. 33, 1–13 (2012).

    Article  PubMed  Google Scholar 

  49. Fu, G. et al. A proof of concept study of function-based statistical analysis of fNIRS data: Syntax comprehension in children with specific language impairment compared to typically-developing controls. Front Behav. Neurosci. 10, 108 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Guerreiro, M. M. et al. Developmental language disorder associated with polymicrogyria. Neurology 59, 245–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Jäncke, L., Siegenthaler, T., Preis, S. & Steinmetz, H. Decreased white-matter density in a left-sided fronto-temporal network in children with developmental language disorder: evidence for anatomical anomalies in a motor-language network. Brain Lang. 102, 91–98 (2007).

    Article  PubMed  Google Scholar 

  52. Lou, H. C., Henriksen, L. & Bruhn, P. Focal cerebral dysfunction in developmental learning disabilities. Lancet 335, 8–11 (1990).

    Article  CAS  PubMed  Google Scholar 

  53. Chiron, C. et al. Hemispheric specialization using SPECT and stimulation tasks in children with dysphasia and dystrophia. Dev. Med. Child Neurol. 41, 512–520 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Cohen, M., Campbell, R. & Yaghmai, F. Neuropathological abnormalities in developmental dysphasia. Ann. Neurol. 25, 567–570 (1989).

    Article  CAS  PubMed  Google Scholar 

  55. Herbert, M. R. et al. Larger brain and white matter volumes in children with developmental language disorder. Dev. Sci. 6, F11–F22 (2003).

    Article  Google Scholar 

  56. Tallal, P., Jernigan, T. L. & Trauner, D. Developmental bilateral damage to the head of the caudate nuclei: Implications for speech-language pathology. J. Med. Speech Lang. Pathol. 2, 23–28 (1994).

    Google Scholar 

  57. Israel, S. M. et al. Different roles of frontal versus striatal atrophy in HIV‐associated neurocognitive disorders. Hum. Brain Mapp. 40, 3010–3026 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Turkeltaub, P. et al. A novel meta-analytic technique reveals the neuroanatomy of specific language impairment. Procedia Soc. Behav. Sci. 61, 34 (2012).

    Article  Google Scholar 

  59. Ullman, M. T. et al. A novel meta-analytic technique identifies consistent abnormalities of the caudate nucleus and frontal cortex in Specific Language Impairment. J. Cogn. Neurosci. 25 (Suppl.), 252 (2013).

  60. Ullman, M. T. Contributions of memory circuits to language: the declarative/procedural model. Cognition 92, 231–270 (2004).

    Article  PubMed  Google Scholar 

  61. Doyon, J. et al. Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav. Brain Res. 199, 61–75 (2009).

    Article  PubMed  Google Scholar 

  62. Janacsek, K. et al. Sequence learning in the human brain: a functional neuroanatomical meta-analysis of serial reaction time studies. NeuroImage 207, 116387 (2020).

    Article  PubMed  Google Scholar 

  63. Tagarelli, K. M., Shattuck, K. F., Turkeltaub, P. E. & Ullman, M. T. Language learning in the adult brain: a neuroanatomical meta-analysis of lexical and grammatical learning. NeuroImage 193, 178–200 (2019).

    Article  PubMed  Google Scholar 

  64. Ullman, M. T. & Pullman, M. Y. A compensatory role for declarative memory in neurodevelopmental disorders. Neurosci. Biobehav. Rev. 51, 205–222 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Conway, C. M., Arciuli, J., Lum, J. A. & Ullman, M. T. Seeing problems that may not exist: a reply to West et al.’s (2018) questioning of the procedural deficit hypothesis. Dev. Sci. 22, e12814 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. West, G., Vadillo, M. A., Shanks, D. R. & Hulme, C. The procedural learning deficit hypothesis of language learning disorders: we see some problems. Dev. Sci. 21, e12552 (2018).

    Article  PubMed  Google Scholar 

  67. Krishnan, S. et al. Quantitative MRI reveals differences in striatal myelin in children with DLD. eLife 11, e74242 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brain Development Cooperative Group Total and regional brain volumes in a population-based normative sample from 4 to 18 years: the NIH MRI Study of Normal Brain Development. Cereb. Cortex 22, 1–12 (2012).

  69. Janacsek, K. et al. Subcortical cognition: the fruit below the rind. Annu. Rev. Neurosci. 45, 361–386 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Arsalidou, M., Duerden, E. G. & Taylor, M. J. The centre of the brain: topographical model of motor, cognitive, affective, and somatosensory functions of the basal ganglia. Hum. Brain Mapp. 34, 3031–3054 (2013).

    Article  PubMed  Google Scholar 

  71. Crosson, B. et al. Left and right basal ganglia and frontal activity during language generation: contributions to lexical, semantic, and phonological processes. J. Int. Neuropsychol. Soc. 9, 1061–1077 (2003).

    Article  PubMed  Google Scholar 

  72. Abrahams, B. S. et al. Genome-wide analyses of human perisylvian cerebral cortical patterning. Proc. Natl Acad. Sci. USA 104, 17849–17854 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bandstra, E. S. et al. Longitudinal influence of prenatal cocaine exposure on child language functioning. Neurotoxicol. Teratol. 24, 297–308 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Byrnes, J. J., Pritchard, G. A., Koff, J. M. & Miller, L. G. Prenatal cocaine exposure: decreased sensitization to cocaine and decreased striatal dopamine transporter binding in offspring. Neuropharmacology 32, 721–723 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Eicher, J. D. et al. Associations of prenatal nicotine exposure and the dopamine related genes ANKK1 and DRD2 to verbal language. PLoS One 8, e63762 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ercan-Sencicek, A. G. et al. A balanced t(10;15) translocation in a male patient with developmental language disorder. Eur. J. Med. Genet. 55, 128–131 (2012).

    Article  PubMed  Google Scholar 

  77. Fattal, I., Friedmann, N. & Fattal-Valevski, A. The crucial role of thiamine in the development of syntax and lexical retrieval: a study of infantile thiamine deficiency. Brain 134, 1720–1739 (2011).

    Article  PubMed  Google Scholar 

  78. Kornreich, L. et al. Thiamine deficiency in infants: MR findings in the brain. Am. J. Neuroradiol. 26, 1668–1674 (2005).

    PubMed  PubMed Central  Google Scholar 

  79. Newbury, D. F., Fisher, S. E. & Monaco, A. P. Recent advances in the genetics of language impairment. Genome Med. 2, 6 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Schneider, T. et al. Prenatal exposure to nicotine impairs performance of the 5-choice serial reaction time task in adult rats. Neuropsychopharmacology 36, 1114–1125 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bishop, D. V. What causes specific language impairment in children? Curr. Dir. Psychol. Sci. 15, 217–221 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Clark, G. M. & Lum, J. A. G. Procedural learning in Parkinson’s disease, specific language impairment, dyslexia, schizophrenia, developmental coordination disorder, and autism spectrum disorders: a second-order meta-analysis. Brain Cogn. 117, 41–48 (2017).

    Article  PubMed  Google Scholar 

  83. Kemény, F. & Lukács, Á. Impaired procedural learning in language impairment: results from probabilistic categorization. J. Clin. Exp. Neuropsychol. 32, 249–258 (2009).

    Article  PubMed  Google Scholar 

  84. Lee, J. C. & Tomblin, B. Procedural learning and individual differences in language. Lang. Learn. Dev. 11, 215–236 (2015).

    Article  PubMed  Google Scholar 

  85. Hsu, H. J. & Bishop, D. V. M. Grammatical difficulties in children with specific language impairment: is learning deficient? Hum. Dev. 53, 264–277 (2010).

    Article  Google Scholar 

  86. Evans, J. L., Saffran, J. R. & Robe-Torres K. Statistical learning in children with specific language impairment. J. Speech Lang. Hear. Res. 52, 321–355 (2009).

  87. Vinas-Guasch, N. & Wu, Y. J. The role of the putamen in language: a meta-analytic connectivity modeling study. Brain Struct. Funct. 222, 3991–4004 (2017).

    Article  PubMed  Google Scholar 

  88. Anderson, V., Jacobs, R. & Anderson, P. J. Executive Functions And The Frontal Lobes: A Lifespan Perspective (Taylor & Francis, 2008).

  89. Price, C. J. A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage 62, 816–847 (2012).

    Article  PubMed  Google Scholar 

  90. Culham, J. C. & Kanwisher, N. G. Neuroimaging of cognitive functions in human parietal cortex. Curr. Opin. Neurobiol. 11, 157–163 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Seghier, M. L. The angular gyrus: multiple functions and multiple subdivisions. Neuroscientist 19, 43–61 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wagner, A. D., Shannon, B. J., Kahn, I. & Buckner, R. L. Parietal lobe contributions to episodic memory retrieval. Trends Cogn. Sci. 9, 445–453 (2005).

    Article  PubMed  Google Scholar 

  93. Friederici, A. D. The cortical language circuit: from auditory perception to sentence comprehension. Trends Cogn. Sci. 16, 262–268 (2012).

    Article  PubMed  Google Scholar 

  94. Rauschecker, J. P. & Scott, S. K. Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat. Neurosci. 12, 718–724 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nicolson, R. I. & Fawcett, A. J. Procedural learning difficulties: reuniting the developmental disorders? Trends Neurosci. 30, 135–141 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Hoogman, M. et al. Assessing the effects of common variation in the FOXP2 gene on human brain structure. Front. Hum. Neurosci. 8, 473 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Vargha-Khadem, F., Gadian, D. G., Copp, A. & Mishkin, M. FOXP2 and the neuroanatomy of speech and language. Nat. Rev. Neurosci. 6, 131–138 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Liegeois, F. J. et al. Early neuroimaging markers of FOXP2 intragenic deletion. Sci. Rep. 6, 35192 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Frank, M. J. Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J. Cogn. Neurosci. 17, 51–72 (2005).

    Article  PubMed  Google Scholar 

  100. Hélie, S., Ell, S. W. & Ashby, F. G. Learning robust cortico-cortical associations with the basal ganglia: an integrative review. Cortex 64, 123–135 (2015).

    Article  PubMed  Google Scholar 

  101. Middleton, F. A. & Strick, P. L. The temporal lobe is a target of output from the basal ganglia. Proc. Natl Acad. Sci. USA 93, 8683–8687 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Alburges, M. E., Hoonakker, A. J., Horner, K. A., Fleckenstein, A. E. & Hanson, G. R. Methylphenidate alters basal ganglia neurotensin systems through dopaminergic mechanisms: a comparison with cocaine treatment. J. Neurochem. 117, 470–478 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. de Vries, M. H., Ulte, C., Zwitserlood, P., Szymanski, B. & Knecht, S. Increasing dopamine levels in the brain improves feedback-based procedural learning in healthy participants: an artificial-grammar-learning experiment. Neuropsychologia 48, 3193–3197 (2010).

    Article  PubMed  Google Scholar 

  104. Ullman, M. T. & Lovelett, J. T. Implications of the declarative/procedural model for improving second language learning: the role of memory enhancement techniques. Second Lang. Res. 34, 39–65 (2018).

    Article  Google Scholar 

  105. Lum, J. A. G., Conti-Ramsden, G., Page, D. & Ullman, M. T. Working, declarative and procedural memory in specific language impairment. Cortex 48, 1138–1154 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ullman, M. T. in Neurobiology of Language (eds Hickok, G. & Small, S. L.) Ch. 76 (Elsevier, 2016).

  107. Stoeger, T., Gerlach, M., Morimoto, R. I. & Nunes Amaral, L. A. Large-scale investigation of the reasons why potentially important genes are ignored. PLoS Biol. 16, e2006643 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Merton, R. K. The Matthew effect in science. Science 159, 59–63 (1968).

    Article  ADS  Google Scholar 

  109. Bishop, D. V. M. Which neurodevelopmental disorders get researched and why? PLoS One 5, e15112 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kulkarni, A. A. et al. Editorial perspective: speaking up for developmental language disorder–the top 10 priorities for research. J. Child Psychol. Psychiatry 63, 957–960 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  111. McGregor, K. K. How we fail children with developmental language disorder. Lang. Speech Hear. Serv. Sch. 1, 981–992 (2020).

    Article  Google Scholar 

  112. Martinez-Gonzalez, C., Bolam, J. P. & Mena-Segovia, J. Topographical organization of the pedunculopontine nucleus. Front. Neuroanat. 5, 22 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Nioche, C., Cabanis, E. & Habas, C. Functional connectivity of the human red nucleus in the brain resting state at 3T. Am. J. Neuroradiol. 30, 396–403 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Roberts, T. P. L. et al. Left hemisphere diffusivity of the arcuate fasciculus: influences of autism spectrum disorder and language impairment. Am. J. Neuroradiol. 35, 587–592 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vallée, E. et al. Statistical analysis of white matter integrity for the clinical study of typical specific language impairment in children. In Computational Diffusion MRI and Brain Connectivity: MICCAI Workshops, Nagoya, Japan, September 22nd, 2013 (eds Schultz, T. et al.) 187–195 (Springer, 2014).

  116. Verhoeven, J. S. et al. Is there a common neuroanatomical substrate of language deficit between autism spectrum disorder and specific language impairment?. Cereb. Cortex 22, 2263–2271 (2012).

    Article  PubMed  Google Scholar 

  117. Verly, M. et al. The mis-wired language network in children with developmental language disorder: insights from DTI tractography. Brain Imaging Behav. 13, 973–984 (2018).

  118. Vydrova, R. et al. Structural alterations of the language connectome in children with specific language impairment. Brain Lang. 151, 35–41 (2015).

    Article  PubMed  Google Scholar 

  119. Enard, W. FOXP2 and the role of cortico-basal ganglia circuits in speech and language evolution. Curr. Opin. Neurobiol. 21, 415–424 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Peñagarikano, O. et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 147, 235–246 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Lương, K. V. & Nguyễn, L. T. The beneficial role of thiamine in Parkinson disease. CNS Neurosci. Ther. 19, 461–468 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Bhide, P. G. Dopamine, cocaine and the development of cerebral cortical cytoarchitecture: a review of current concepts. Semin. Cell Dev. Biol. 20, 395–402 (2009).

  123. Aljahlan, Y. & Spaulding, T. J. Attentional shifting in children with developmental language disorder: a meta-analysis. J. Commun. Disord. 91, 106105 (2021).

    Article  PubMed  Google Scholar 

  124. Ladányi, E., Persici, V., Fiveash, A., Tillmann, B. & Gordon, R. L. Is atypical rhythm a risk factor for developmental speech and language disorders? Wiley Interdiscip. Rev. Cogn. Sci. 11, e1528 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Lee, J. C. Insensitivity to response-contingent feedback in adolescents with developmental language disorder (DLD). Brain Lang. 174, 112–118 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Mari, G., Scorpecci, A., Reali, L. & D’Alatri, L. Music identification skills of children with specific language impairment. Int. J. Lang. Commun. Disord. 51, 203–211 (2016).

    Article  PubMed  Google Scholar 

  127. Sanjeevan, T., Rosenbaum, D. A. & Mainela-Arnold, E. Planning deficits in children with specific language impairment are reflected in unnecessarily awkward grasps. J. Speech Lang. Hear. Res. 61, 887–896 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Support was provided by NIH R01 HD049347 (M.T.U.), NIH R21 HD 087088 (M.T.U.), NSF BCS 1439290 (M.T.U.), NSF BCS 1940980 (M.T.U.), and the Mabel H. Flory Trust (M.T.U. and P.E.T.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. The authors wish to thank S. Earle, J. Lum, C. Conway, E. Plante, K. Shattuck and G. Conti-Ramsden for comments, and K. Spurlock, R. Reichle, R. Campbell, G. A. McQuaid, K. Tagarelli and J. Reifegerste for help on previous searches or previous versions of tables or figures.

Author information

Authors and Affiliations

Authors

Contributions

M.T.U., M.Y.P. and P.E.T. conceived the ideas for this paper. M.T.U. and G.M.C. wrote the paper, with contributions from all authors. P.E.T. developed the permutation-based analyses. X.J. wrote the MATLAB code to perform the analyses. G.M.C. performed the searches and analyses and created the tables and figures, under guidance from M.T.U. and with help from M.Y.P., J.T.L. and E.I.P.

Corresponding author

Correspondence to Michael T. Ullman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Annabel Chen, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Results, Figs. 1 and 2, and Tables 1–19.

Reporting Summary

Supplementary Data 1

PRISMA checklist.

Supplementary Data 2

PRISMA abstract checklist.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullman, M.T., Clark, G.M., Pullman, M.Y. et al. The neuroanatomy of developmental language disorder: a systematic review and meta-analysis. Nat Hum Behav (2024). https://doi.org/10.1038/s41562-024-01843-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-024-01843-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing