Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The impact of assortative mating, participation bias and socioeconomic status on the polygenic risk of behavioural and psychiatric traits

Abstract

To investigate assortative mating (AM), participation bias and socioeconomic status (SES) with respect to the genetics of behavioural and psychiatric traits, we estimated AM signatures using gametic phase disequilibrium and within-spouses and within-siblings polygenic risk score correlation analyses, also performing a SES conditional analysis. The cross-method meta-analysis identified AM genetic signatures for multiple alcohol-related phenotypes, bipolar disorder, major depressive disorder, schizophrenia and Tourette syndrome. Here, after SES conditioning, we observed changes in the AM genetic signatures for maximum habitual alcohol intake, frequency of drinking alcohol and Tourette syndrome. We also observed significant gametic phase disequilibrium differences between UK Biobank mental health questionnaire responders versus non-responders for major depressive disorder and alcohol use disorder. These results highlight the impact of AM, participation bias and SES on the polygenic risk of behavioural and psychiatric traits, particularly in alcohol-related traits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetic signatures of AM across behavioural traits and psychiatric disorders after Bonferroni multiple testing correction.
Fig. 2: Genetic signatures of AM across UKB MHQ traits after Bonferroni multiple testing correction.
Fig. 3: Genetic signatures of AM across behavioural traits and psychiatric disorders with significant changes after SES conditioning.

Similar content being viewed by others

Data availability

All results used to make conclusions discussed in this study are provided as Supplementary Material. All GWAS data are publicly available on their respective websites: UK Biobank (https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access); Psychiatric Genomics Consortium (https://pgc.unc.edu/for-researchers/download-results/); Million Veteran Program (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001672.v8.p1); Pan-UK Biobank (https://pan.ukbb.broadinstitute.org/).

Code availability

The majority of the analyses were conducted using previously developed tools. These were described in Methods with their corresponding references. Custom R scripts developed for the simulation analysis and for estimating expected cross-method results are available on Zenodo (https://doi.org/10.5281/zenodo.10476703).

References

  1. Wendt, F. R. et al. Characterizing the effect of background selection on the polygenicity of brain-related traits. Genomics 113, 111–119 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Plomin, R. & von Stumm, S. Polygenic scores: prediction versus explanation. Mol. Psychiatry 27, 49–52 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Yengo, L. et al. Imprint of assortative mating on the human genome. Nat. Hum. Behav. 2, 948–954 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Taylor, A. E. et al. Exploring the association of genetic factors with participation in the Avon Longitudinal Study of Parents and Children. Int J. Epidemiol. 47, 1207–1216 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nordsletten, A. E. et al. Patterns of nonrandom mating within and across 11 major psychiatric disorders. JAMA Psychiatry 73, 354–361 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Peyrot, W. J., Robinson, M. R., Penninx, B. W. & Wray, N. R. Exploring boundaries for the genetic consequences of assortative mating for psychiatric traits. JAMA Psychiatry 73, 1189–1195 (2016).

    Article  PubMed  Google Scholar 

  7. Border, R. et al. Cross-trait assortative mating is widespread and inflates genetic correlation estimates. Science 378, 754–761 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lamers, F. et al. Sociodemographic and psychiatric determinants of attrition in the Netherlands Study of Depression and Anxiety (NESDA). Compr. Psychiatry 53, 63–70 (2012).

    Article  PubMed  Google Scholar 

  9. Gorman, E. et al. Assessing the representativeness of population-sampled health surveys through linkage to administrative data on alcohol-related outcomes. Am. J. Epidemiol. 180, 941–948 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tyrrell, J. et al. Genetic predictors of participation in optional components of UK Biobank. Nat. Commun. 12, 886 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pirastu, N. et al. Genetic analyses identify widespread sex-differential participation bias. Nat. Genet. 53, 663–671 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Widiger, T. A. Personality and psychopathology. World Psychiatry 10, 103–106 (2011).

    Article  Google Scholar 

  13. Gelernter, J. & Polimanti, R. Genetics of substance use disorders in the era of big data. Nat. Rev. Genet. 22, 712–729 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lichter, D. T. and Qian Z. in The Study of Assortative Mating: Theory, Data, and Analysis. Analytical Family Demography (ed. Schoen, R.) (Springer International Publishing, 2019).

  15. Russell, G. et al. Selection bias on intellectual ability in autism research: a cross-sectional review and meta-analysis. Mol. Autism 10, 9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sareen, J., Afifi, T. O., McMillan, K. A. & Asmundson, G. J. Relationship between household income and mental disorders: findings from a population-based longitudinal study. Arch. Gen. Psychiatry 68, 419–427 (2011).

    Article  PubMed  Google Scholar 

  17. Shah, N. et al. National or population level interventions addressing the social determinants of mental health—an umbrella review. BMC Public Health 21, 2118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hill, W. D. et al. Genome-wide analysis identifies molecular systems and 149 genetic loci associated with income. Nat. Commun. 10, 5741 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wendt, F. R. et al. Multivariate genome-wide analysis of education, socioeconomic status and brain phenome. Nat. Hum. Behav. 5, 482–496 (2021).

    Article  PubMed  Google Scholar 

  20. Sullivan, P. F. et al. Psychiatric genomics: an update and an agenda. Am. J. Psychiatry 175, 15–27 (2018).

    Article  PubMed  Google Scholar 

  21. Gaziano, J. M. et al. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol. 70, 214–223 (2016).

    Article  PubMed  Google Scholar 

  22. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nievergelt, C. M. et al. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat. Commun. 10, 4558 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Howe, L. J. et al. Assortative mating and within-spouse pair comparisons. PLoS Genet. 17, e1009883 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu, Z. et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun. 9, 224 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Aschard, H., Vilhjalmsson, B. J., Joshi, A. D., Price, A. L. & Kraft, P. Adjusting for heritable covariates can bias effect estimates in genome-wide association studies. Am. J. Hum. Genet 96, 329–339 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Deak, J. D. et al. Genome-wide investigation of maximum habitual alcohol intake in US veterans in relation to alcohol consumption traits and alcohol use disorder. JAMA Netw. Open 5, e2238880 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Polimanti, R. et al. Evidence of causal effect of major depression on alcohol dependence: findings from the psychiatric genomics consortium. Psychol. Med. 49, 1218–1226 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Agrawal, A. et al. Assortative mating for cigarette smoking and for alcohol consumption in female Australian twins and their spouses. Behav. Genet 36, 553–566 (2006).

    Article  PubMed  Google Scholar 

  31. Grant, J. D. et al. Spousal concordance for alcohol dependence: evidence for assortative mating or spousal interaction effects? Alcohol Clin. Exp. Res 31, 717–728 (2007).

    Article  PubMed  Google Scholar 

  32. Reynolds, C. A., Barlow, T. & Pedersen, N. L. Alcohol, tobacco and caffeine use: spouse similarity processes. Behav. Genet 36, 201–215 (2006).

    Article  PubMed  Google Scholar 

  33. Rhule-Louie, D. M. & McMahon, R. J. Problem behavior and romantic relationships: assortative mating, behavior contagion, and desistance. Clin. Child Fam. Psychol. Rev. 10, 53–100 (2007).

    Article  PubMed  Google Scholar 

  34. Colbert, S. M. C. et al. Declining autozygosity over time: an exploration in over 1 million individuals from three diverse cohorts. Am. J. Hum. Genet 110, 1008–1014 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bulmer, M. G. The effect of selection on genetic variability: a simulation study. Genet. Res. 28, 101–117 (1976).

    Article  CAS  PubMed  Google Scholar 

  36. Wendt, F. R. et al. Using phenotype risk scores to enhance gene discovery for generalized anxiety disorder and posttraumatic stress disorder. Mol. Psychiatry 27, 2206–2215 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Davis, K. A. S. et al. Mental health in UK Biobank—development, implementation and results from an online questionnaire completed by 157 366 participants: a reanalysis. BJPsych Open 6, e18 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hugh-Jones, D., Verweij, K. J. H., St. Pourcain, B. & Abdellaoui, A. Assortative mating on educational attainment leads to genetic spousal resemblance for polygenic scores. Intelligence 59, 103–108 (2016).

    Article  Google Scholar 

  39. Levey, D. F. et al. Reproducible genetic risk loci for anxiety: results from approximately 200,000 participants in the million veteran program. Am. J. Psychiatry 177, 223–232 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Levey, D. F. et al. Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nat. Neurosci. 24, 954–963 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wendt, F. R. et al. Modeling the longitudinal changes of ancestry diversity in the Million Veteran Program. Hum. Genomics 17, 46 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tsai, J. & Rosenheck, R. A. Risk factors for homelessness among US veterans. Epidemiol. Rev. 37, 177–195 (2015).

    Article  PubMed  Google Scholar 

  44. Collins, S. E. Associations between socioeconomic factors and alcohol outcomes. Alcohol Res. 38, 83–94 (2016).

    PubMed  PubMed Central  Google Scholar 

  45. Okbay, A. et al. Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nat. Genet. 54, 437–449 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Robinson, M. R. et al. Genetic evidence of assortative mating in humans. Nat. Hum. Behav. 1, 0016 (2017).

    Article  Google Scholar 

  47. Wang, X. et al. Polygenic risk prediction: why and when out-of-sample prediction R2 can exceed SNP-based heritability. Am. J. Hum. Genet 110, 1207–1215 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Conomos, M. P., Reiner, A. P., Weir, B. S. & Thornton, T. A. Model-free estimation of recent genetic relatedness. Am. J. Hum. Genet 98, 127–148 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 1000 Genomes Project Consortiumet al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  Google Scholar 

  50. Li, J. Z. et al. Worldwide human relationships inferred from genome-wide patterns of variation. Science 319, 1100–1104 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Duncan, L. et al. Significant locus and metabolic genetic correlations revealed in genome-wide association study of anorexia nervosa. Am. J. Psychiatry 174, 850–858 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Otowa, T. et al. Meta-analysis of genome-wide association studies of anxiety disorders. Mol. Psychiatry 21, 1485 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 51, 793–803 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lam, M. et al. Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat. Genet. 51, 1670–1678 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Forstner, A. J. et al. Genome-wide association study of panic disorder reveals genetic overlap with neuroticism and depression. Mol. Psychiatry 26, 4179–4190 (2021).

    Article  PubMed  Google Scholar 

  59. Duncan, L. E. et al. Largest GWAS of PTSD (N=20 070) yields genetic overlap with schizophrenia and sex differences in heritability. Mol. Psychiatry 23, 666–673 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Yu, D. et al. Interrogating the genetic determinants of Tourette’s syndrome and other tic disorders through genome-wide association studies. Am. J. Psychiatry 176, 217–227 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. International Obsessive Compulsive Disorder Foundation Genetics Collaborative (IOCDF–GC) & OCD Collaborative Genetics Association (OCDCGA) Studies. Revealing the complex genetic architecture of obsessive–compulsive disorder using meta-analysis. Mol. Psychiatry 23, 1181–1188 (2018).

    Article  Google Scholar 

  62. Psychiatric Genomics Consortium (PCG) Genome-wide association statistics https://pgc.unc.edu/for-researchers/download-results/ (2023).

  63. Kranzler, H. R. et al. Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nat. Commun. 10, 1499 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gelernter, J. et al. Genome-wide association study of maximum habitual alcohol intake in >140,000 U.S. European and African American veterans yields novel risk loci. Biol. Psychiatry 86, 365–376 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhou, H. et al. Association of OPRM1 functional coding variant with opioid use disorder: a genome-wide association study. JAMA Psychiatry 77, 1072–1080 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Stein, M. B. et al. Genome-wide association analyses of post-traumatic stress disorder and its symptom subdomains in the Million Veteran Program. Nat. Genet. 53, 174–184 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Veterans Administration (VA) Million Veteran Program (MVP) summary results from omics studies. dbGaP https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001672.v8.p1 (2022).

  68. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Choi, S. W. & O’Reilly, P. F. PRSice-2: polygenic risk score software for biobank-scale data. Gigascience 8, giz082 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. International HapMap Consortiumet al. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).

    Article  Google Scholar 

  73. Wu, Y. et al. Estimating genetic nurture with summary statistics of multigenerational genome-wide association studies. Proc. Natl Acad. Sci. USA 118, e2023184118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Article  Google Scholar 

  76. Cabrera-Mendoza, B., Yengo, L. & Polimanti, R. Custom R scripts for ‘The impact of assortative mating, participation bias, and socioeconomic status on the polygenic risk of behavioral and psychiatric traits’. Zenodo https://doi.org/10.5281/zenodo.10476703 (2024).

  77. Townsend, P., Phillimore, P. & Beattie, A. Health and Deprivation: Inequality and the North 1st edn (Croom Helm, 1988).

  78. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the participants and the investigators involved in the UK Biobank, Million Veteran Program and the Psychiatric Genomics Consortium for making their data publicly available. This research was conducted using the UK Biobank Resource (application reference number 58146). The authors acknowledge support from the National Institutes of Health (R21 DC018098, R33 DA047527 and RF1 MH132337 to R.P. and K99 AG078503 to G.A.P.), One Mind (Rising Star Award to R.P.) and the American Foundation for Suicide Prevention (PDF-1-022-21 to B.C.-M.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the paper.

Author information

Authors and Affiliations

Authors

Contributions

B.C.-M., L.Y. and R.P. designed this study. B.C.-M. conducted the analysis. B.C.-M. and R.P. wrote the paper. F.R.W., G.A.P. and L.Y. critically revised the paper. All authors contributed to interpretation of the data. L.Y. and R.P. contributed equally to this work and jointly supervised the study.

Corresponding authors

Correspondence to Loic Yengo or Renato Polimanti.

Ethics declarations

Competing interests

R.P. is paid for their editorial work on the journal Complex Psychiatry and reports a research grant from Alkermes. The other authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Lea Davis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods and Fig. 1.

Reporting Summary

Supplementary Table

Supplementary Tables 1–21.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera-Mendoza, B., Wendt, F.R., Pathak, G.A. et al. The impact of assortative mating, participation bias and socioeconomic status on the polygenic risk of behavioural and psychiatric traits. Nat Hum Behav (2024). https://doi.org/10.1038/s41562-024-01828-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-024-01828-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing