Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Beyond the factor indeterminacy problem using genome-wide association data

Abstract

Latent factors, such as general intelligence, depression and risk tolerance, are invoked in nearly all social science research where a construct is measured via aggregation of symptoms, question responses or other measurements. Because latent factors cannot be directly observed, they are inferred by fitting a specific model to empirical patterns of correlations among measured variables. A long-standing critique of latent factor theories is that the correlations used to infer latent factors can be produced by alternative data-generating mechanisms that do not include latent factors. This is referred to as the factor indeterminacy problem. Researchers have recently begun to overcome this problem by using information on the associations between individual genetic variants and measured variables. We review historical work on the factor indeterminacy problem and describe recent efforts in genomics to rigorously test the validity of latent factors, advancing the understanding of behavioural science constructs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metaphor for factor analysis.
Fig. 2: The factor model and alternative models.
Fig. 3: Heuristic representation of the causal chain from genetic polymorphisms to complex phenotypes under a factor model scenario and an overlap scenario.
Fig. 4: Structure of simulations for common factor and overlap generating models.
Fig. 5: Correlation matrices generated from process overlap and common factor models.
Fig. 6: The distribution of the heterogeneity statistic and the association statistic across simulation conditions.

Similar content being viewed by others

References

  1. Steiger, J. H. Factor indeterminacy in the 1930’s and the 1970’s: some interesting parallels. Psychometrika 44, 157–167 (1979).

    Article  Google Scholar 

  2. Steiger, J. H. Coming full circle in the history of factor indeterminancy. Multivar. Behav. Res. 31, 617–630 (1996).

    Article  CAS  Google Scholar 

  3. John, O. P., Naumann, L. P., & Soto, C. J. in Handbook of Personality: Theory and Research (eds John, O. P. et al.) 114–158 (Guilford Press, 2008).

  4. Ashton, M. C. & Lee, K. Empirical, theoretical, and practical advantages of the HEXACO model of personality structure. Personal. Soc. Psychol. Rev. 11, 150–166 (2007).

    Article  Google Scholar 

  5. Achenbach, T. M., Ivanova, M. Y., Rescorla, L. A., Turner, L. V. & Althoff, R. R. Internalizing/externalizing problems: review and recommendations for clinical and research applications. J. Am. Acad. Child Adolesc. Psychiatry 55, 647–656 (2016).

    Article  PubMed  Google Scholar 

  6. Spearman, C. 'General Intelligence,' objectively determined and measured. Am. J. Psychol. 15, 201–292 (1904).

    Article  Google Scholar 

  7. Spearman, C. The measurement of intelligence. Nature 120, 577–578 (1927).

    Article  ADS  Google Scholar 

  8. Cattell, R. B. Abilities: Their Structure, Growth, and Action Vol. 22, 583 (Houghton Mifflin, 1971).

  9. Carroll, J. B. Human Cognitive Abilities: A Survey of Factor-Analytic Studies (Cambridge Univ. Press, 1993).

  10. Cramer, A. O. J. et al. Dimensions of normal personality as networks in search of equilibrium: you can’t like parties if you don’t like people. Eur. J. Pers. 26, 414–431 (2012).

    Article  Google Scholar 

  11. Cramer, A. O. J., Waldorp, L. J., van der Maas, H. L. J. & Borsboom, D. Comorbidity: a network perspective. Behav. Brain Sci. 33, 137–150 (2010).

    Article  PubMed  Google Scholar 

  12. Fried, E. I. Problematic assumptions have slowed down depression research: why symptoms, not syndromes are the way forward. Front. Psychol. 6, 309 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kotov, R. et al. The Hierarchical Taxonomy of Psychopathology (HiTOP): a quantitative nosology based on consensus of evidence. Annu. Rev. Clin. Psychol. 17, 83–108 (2021).

    Article  PubMed  Google Scholar 

  14. Hunt, E. The role of intelligence in modern society. Am. Sci. 83, 356–368 (1995).

    ADS  Google Scholar 

  15. Thurstone, L. L. The Vectors of Mind: Multiple-Factor Analysis for the Isolation of Primary Traits xi, 274 (Univ. Chicago Press, 1935).

  16. Spearman, C. Thurstone’s work re-worked. J. Educ. Psychol. 30, 1–16 (1939).

    Article  Google Scholar 

  17. Beaujean, A. A. & Benson, N. F. The one and the many: enduring legacies of Spearman and Thurstone on intelligence test score interpretation. Appl. Meas. Educ. 32, 198–215 (2019).

    Article  Google Scholar 

  18. Gould, S. J. The Mismeasure of Man (W. W. Norton, 1981).

  19. Borsboom, D., Mellenbergh, G. J. & van Heerden, J. The concept of validity. Psychol. Rev. 111, 1061–1071 (2004).

    Article  PubMed  Google Scholar 

  20. Borsboom, D., Mellenbergh, G. J. & van Heerden, J. The theoretical status of latent variables. Psychol. Rev. 110, 203–219 (2003).

    Article  PubMed  Google Scholar 

  21. Cronbach, L. J. & Meehl, P. E. Construct validity in psychological tests. Psychol. Bull. 52, 281–302 (1955).

    Article  CAS  PubMed  Google Scholar 

  22. Thomson, G. H. A hierarchy without a general factor. Br. J. Psychol. 8, 271–281 (1916).

    Google Scholar 

  23. Bartholomew, D. J., Deary, I. J. & Lawn, M. A new lease of life for Thomson’s bonds model of intelligence. Psychol. Rev. 116, 567–579 (2009).

    Article  PubMed  Google Scholar 

  24. Ceci, S. J. On Intelligence: A Biological Treatise on Intellectual Development (Prentice-Hall, 1990).

  25. Kovacs, K. & Conway, A. R. A. Process overlap theory: a unified account of the general factor of intelligence. Psychol. Inq. 27, 151–177 (2016).

    Article  Google Scholar 

  26. Van Der Maas, H. L. J. et al. A dynamical model of general intelligence: the positive manifold of intelligence by mutualism. Psychol. Rev. 113, 842–861 (2006).

    Article  PubMed  Google Scholar 

  27. Dickens, W. T. What is g? (The Brookings Institution working paper) (2007).

  28. Christensen, A. P., Golino, H. & Silvia, P. J. A psychometric network perspective on the validity and validation of personality trait questionnaires. Eur. J. Pers. 34, 1095–1108 (2020).

    Article  Google Scholar 

  29. Tomarken, A. J. & Waller, N. G. Potential problems with ‘well fitting’ models. J. Abnorm. Psychol. 112, 578–598 (2003).

    Article  PubMed  Google Scholar 

  30. Epskamp, S., Rhemtulla, M. & Borsboom, D. Generalized network psychometrics: combining network and latent variable models. Psychometrika 82, 904–927 (2017).

    Article  MathSciNet  PubMed  Google Scholar 

  31. Carroll, J. B. in Human Cognitive Abilities in Theory and Practice (eds McArdle, J. J. & Woodcock, R. W.) 21–40 (Psychology Press, 1998).

  32. Carroll, J. B. On methodology in the study of cognitive abilities. Multivar. Behav. Res. 30, 429–452 (1995).

    Article  CAS  Google Scholar 

  33. Carroll, J. B. Individual Difference Relations in Psychometric and Experimental Cognitive Tasks (Defense Technical Information Center, 1980).

  34. Detterman, D. K. Does “g” exist? Intelligence 6, 99–108 (1982).

    Article  Google Scholar 

  35. Sternberg, R. J. The nature of mental abilities. Am. Psychol. 34, 214–230 (1979).

    Article  Google Scholar 

  36. Kranzler, J. H. & Jensen, A. R. The nature of psychometric g: unitary process or a number of independent processes? Intelligence 15, 397–422 (1991).

    Article  Google Scholar 

  37. Brody, N. Construct validation of the Sternberg Triarchic Abilities Test: comment and reanalysis. Intelligence 31, 319–329 (2003).

    Article  Google Scholar 

  38. Salthouse, T. A. Attempted decomposition of age-related influences on two tests of reasoning. Psychol. Aging 16, 251–263 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Schubert, A.-L., Hagemann, D., Voss, A., Schankin, A. & Bergmann, K. Decomposing the relationship between mental speed and mental abilities. Intelligence 51, 28–46 (2015).

    Article  Google Scholar 

  40. Colom, R., Jung, R. E. & Haier, R. J. Distributed brain sites for the g-factor of intelligence. NeuroImage 31, 1359–1365 (2006).

    Article  PubMed  Google Scholar 

  41. Takeuchi, H. et al. Global associations between regional gray matter volume and diverse complex cognitive functions: evidence from a large sample study. Sci. Rep. 7, 10014 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  42. Madole, J. W. et al. Aging-sensitive networks within the human structural connectome are implicated in late-life cognitive declines. Biol. Psychiatry 89, 795–806 (2021).

    Article  PubMed  Google Scholar 

  43. Salthouse, T. A. et al. Breadth and age-dependency of relations between cortical thickness and cognition. Neurobiol. Aging 36, 3020–3028 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Abdellaoui, A., Yengo, L., Verweij, K. J. H. & Visscher, P. M. 15 years of GWAS discovery: realizing the promise. Am. J. Hum. Genet. 110, 179–194 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Veller, C. & Coop, G. Interpreting population and family-based genome-wide association studies in the presence of confounding. Preprint at bioRxiv https://doi.org/10.1101/2023.02.26.530052 (2023).

  46. Sanderson, E. et al. Mendelian randomization. Nat. Rev. Methods Prim. 2, 6 (2022).

    Article  CAS  Google Scholar 

  47. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dudbridge, F. Polygenic epidemiology. Genet. Epidemiol. 40, 268–272 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kendler, K. S. et al. Recent advances in the genetic epidemiology and molecular genetics of substance use disorders. Nat. Neurosci. 15, 181–189 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brumpton, B. et al. Avoiding dynastic, assortative mating, and population stratification biases in Mendelian randomization through within-family analyses. Nat. Commun. 11, 3519 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Grotzinger, A. D. et al. Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nat. Hum. Behav. 3, 513–525 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Franić, S. et al. Can genetics help psychometrics? Improving dimensionality assessment through genetic factor modeling. Psychol. Methods 18, 406–433 (2013).

    Article  PubMed  Google Scholar 

  55. Muthén, B. O. Latent variable modeling in heterogeneous populations. Psychometrika 54, 557–585 (1989).

    Article  MathSciNet  Google Scholar 

  56. Tucker-Drob, E. M. How many pathways underlie socioeconomic differences in the development of cognition and achievement? Learn. Individ. Differ. 25, 12–20 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Caspi, A. et al. The p factor: one general psychopathology factor in the structure of psychiatric disorders? Clin. Psychol. Sci. 2, 119–137 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lahey, B. B. et al. Is there a general factor of prevalent psychopathology during adulthood? J. Abnorm. Psychol. 121, 971–977 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Allegrini, A. G. et al. The p factor: genetic analyses support a general dimension of psychopathology in childhood and adolescence. J. Child Psychol. Psychiatry 61, 30–39 (2020).

    Article  PubMed  Google Scholar 

  60. Harden, K. P. et al. Genetic associations between executive functions and a general factor of psychopathology. J. Am. Acad. Child Adolesc. Psychiatry 59, 749–758 (2020).

    Article  PubMed  Google Scholar 

  61. Levin-Aspenson, H. F., Watson, D., Clark, L. A. & Zimmerman, M. What is the general factor of psychopathology? Consistency of the p factor across samples. Assessment 28, 1035–1049 (2021).

    Article  PubMed  Google Scholar 

  62. Snyder, H. R., Young, J. F. & Hankin, B. L. Strong homotypic continuity in common psychopathology-, internalizing-, and externalizing-specific factors over time in adolescents. Clin. Psychol. Sci. 5, 98–110 (2017).

    Article  PubMed  Google Scholar 

  63. Lahey, B. B., Krueger, R. F., Rathouz, P. J., Waldman, I. D. & Zald, D. H. Validity and utility of the general factor of psychopathology. World Psychiatry 16, 142–144 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Watts, A. L., Poore, H. E. & Waldman, I. D. Riskier tests of the validity of the bifactor model of psychopathology. Clin. Psychol. Sci. 7, 1285–1303 (2019).

    Article  Google Scholar 

  65. Grotzinger, A. D. et al. Genetic architecture of 11 major psychiatric disorders at biobehavioral, functional genomic and molecular genetic levels of analysis. Nat. Genet. 54, 548–559 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cai, N. et al. Minimal phenotyping yields genome-wide association signals of low specificity for major depression. Nat. Genet. 52, 437–447 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Deary, I. Looking Down on Human Intelligence: From Psychometrics to the Brain (Oxford Univ. Press, 2000).

  68. McGrew, K. S. CHC theory and the human cognitive abilities project: standing on the shoulders of the giants of psychometric intelligence research. Intelligence 37, 1–10 (2009).

    Article  Google Scholar 

  69. de la Fuente, J., Davies, G., Grotzinger, A. D., Tucker-Drob, E. M. & Deary, I. J. A general dimension of genetic sharing across diverse cognitive traits inferred from molecular data. Nat. Hum. Behav. 5, 49–58 (2021).

    Article  PubMed  Google Scholar 

  70. Grotzinger, A. D., de la Fuente, J., Davies, G., Nivard, M. G. & Tucker-Drob, E. M. Transcriptome-wide and stratified genomic structural equation modeling identify neurobiological pathways shared across diverse cognitive traits. Nat. Commun. 13, 6280 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Marioni, R. E. et al. GWAS on family history of Alzheimer’s disease. Transl. Psychiatry 8, 99 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Achenbach, T. M. The classification of children’s psychiatric symptoms: a factor-analytic study. Psychol. Monogr. Gen. Appl. 80, 1–37 (1966).

    Article  CAS  Google Scholar 

  73. Karlsson Linnér, R. et al. Multivariate analysis of 1.5 million people identifies genetic associations with traits related to self-regulation and addiction. Nat. Neurosci. 24, 1367–1376 (2021).

    Article  PubMed  Google Scholar 

  74. Hart, A. B. & Kranzler, H. R. Alcohol dependence genetics: lessons learned from genome-wide association studies (GWAS) and post-GWAS analyses. Alcohol Clin. Exp. Res. 39, 1312–1327 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sehnal, D. et al. Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 49, W431–W437 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Torres-Ocampo, A. P. et al. Characterization of CaMKIIα holoenzyme stability. Protein Sci. 29, 1524–1534 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ostermeier, C. & Brunger, A. T. Structural basis of Rab effector specificity: crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A. Cell 96, 363–374 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Dong, Y. et al. Closed-state inactivation and pore-blocker modulation mechanisms of human CaV2.2. Cell Rep. 37, 109931 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Laird, N. M. & Lange, C. in The Fundamentals of Modern Statistical Genetics. Statistics for Biology and Health, https://doi.org/10.1007/978-1-4419-7338-2_1 (Springer, 2011)

Download references

Acknowledgements

We thank M. Rhemtulla (University of California Davis), B. Domingue (Stanford University), K. Kanopka (New York University), S. Trejo (Princeton University), D. Londono-Correa (University of Texas at Austin) and C. Williams (University of Texas at Austin) for their invaluable feedback on earlier versions of this work. This research was supported by National Institutes of Health (NIH) grants R01MH120219 and RF1AG073593. E.M.T.-D. is a member of the Population Research Center and Center on Aging and Population Sciences at the University of Texas at Austin, which are supported by NIH grants P2CHD042849 and P30AG066614, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret L. Clapp Sullivan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Methods and Results.

Supplementary Tables

Supplementary Tables 1–5 with model solutions and model fit statistics.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clapp Sullivan, M.L., Schwaba, T., Harden, K.P. et al. Beyond the factor indeterminacy problem using genome-wide association data. Nat Hum Behav 8, 205–218 (2024). https://doi.org/10.1038/s41562-023-01789-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-023-01789-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing