Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exome sequencing identifies genes associated with sleep-related traits

Abstract

Sleep is vital for human health and has a moderate heritability. Previous genome-wide association studies have limitations in capturing the role of rare genetic variants in sleep-related traits. Here we conducted a large-scale exome-wide association study of eight sleep-related traits (sleep duration, insomnia symptoms, chronotype, daytime sleepiness, daytime napping, ease of getting up in the morning, snoring and sleep apnoea) among 450,000 participants from UK Biobank. We identified 22 new genes associated with chronotype (ADGRL4, COL6A3, CLK4 and KRTAP3-3), daytime sleepiness (ST3GAL1 and ANKRD12), daytime napping (PLEKHM1, ANKRD12 and ZBTB21), snoring (WDR59) and sleep apnoea (13 genes). Notably, 20 of these genes were confirmed to be significantly associated with sleep disorders in the FinnGen cohort. Enrichment analysis revealed that these discovered genes were enriched in circadian rhythm and central nervous system neurons. Phenotypic association analysis showed that ANKRD12 was associated with cognition and inflammatory traits. Our results demonstrate the value of large-scale whole-exome analysis in understanding the genetic architecture of sleep-related traits and potential biological mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of the study.
Fig. 2: Exome-wide single-variant tests for sleep-related traits.
Fig. 3: Exome-wide gene-based tests for sleep-related traits.
Fig. 4: Burden heritability of sleep-related traits.
Fig. 5: Biological functions of genes associated with sleep-related traits.
Fig. 6: Phenome-wide association of sleep-related genes.

Similar content being viewed by others

Data availability

The main data, including the individual-level phenotypic and genetic data used in this study, were accessed from UK Biobank under application number 19542 and are available through UK Biobank (https://www.ukbiobank.ac.uk/). Summary GWAS statistics of FinnGen were obtained through https://r9.finngen.fi/. The single-cell sequencing data from the human brain were obtained from the Gene Expression Omnibus database (GSE173731). The single-cell sequencing data from the mouse central nervous system were obtained from the Mouse Brain Atlas (http://mousebrain.org/adolescent/).

Code availability

The code used for single-variant and gene-based analysis is an adaptation of the R package SAIGE-GENE+ v.1.1.6.2 (https://github.com/saigegit/SAIGE/). Quality control of individual-level data was performed using Hail v.0.2 (https://hail.is) and PLINK v.2.0 (https://www.cog-genomics.org/plink/2.0/). Variant annotation was performed using SnpEff v.5.1 (https://pcingola.github.io/SnpEff/). Burden heritability estimation was performed using BHR v.0.1.0 (https://github.com/ajaynadig/bhr/). The analysis and visualization of scRNA-seq data were performed using Seurat v.4.3.0 (https://github.com/satijalab/seurat/). GO enrichment analysis was performed using clusterProfiler v.4.2.2 (https://github.com/YuLab-SMU/clusterProfiler/). Tissue expression enrichment analysis was performed using FUMA v.1.5.6 (https://fuma.ctglab.nl/). Custom scripts for the analyses in this paper are available at https://github.com/cjfei18/sleep_wes.

References

  1. Stranges, S., Tigbe, W., Gomez-Olive, F. X., Thorogood, M. & Kandala, N. B. Sleep problems: an emerging global epidemic? Findings from the INDEPTH WHO–SAGE study among more than 40,000 older adults from 8 countries across Africa and Asia. Sleep 35, 1173–1181 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Leng, Y., Musiek, E. S., Hu, K., Cappuccio, F. P. & Yaffe, K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol. 18, 307–318 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Irwin, M. R. Sleep and inflammation: partners in sickness and in health. Nat. Rev. Immunol. 19, 702–715 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Fan, M. et al. Sleep patterns, genetic susceptibility, and incident cardiovascular disease: a prospective study of 385 292 UK Biobank participants. Eur. Heart J. 41, 1182–1189 (2020).

    Article  PubMed  Google Scholar 

  5. Cappuccio, F. P., D’Elia, L., Strazzullo, P. & Miller, M. A. Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies. Sleep 33, 585–592 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lane, J. M. et al. Genetics of circadian rhythms and sleep in human health and disease. Nat. Rev. Genet. 24, 4–20 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Ambrosius, U. et al. Heritability of sleep electroencephalogram. Biol. Psychiatry 64, 344–348 (2008).

    Article  PubMed  Google Scholar 

  8. Gottlieb, D. J. et al. Novel loci associated with usual sleep duration: the CHARGE Consortium Genome-Wide Association Study. Mol. Psychiatry 20, 1232–1239 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Lane, J. M. et al. Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits. Nat. Genet. 49, 274–281 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Doherty, A. et al. GWAS identifies 14 loci for device-measured physical activity and sleep duration. Nat. Commun. 9, 5257 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dashti, H. S. et al. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat. Commun. 10, 1100 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hammerschlag, A. R. et al. Genome-wide association analysis of insomnia complaints identifies risk genes and genetic overlap with psychiatric and metabolic traits. Nat. Genet. 49, 1584–1592 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, H. et al. Genome-wide association analysis of self-reported daytime sleepiness identifies 42 loci that suggest biological subtypes. Nat. Commun. 10, 3503 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dashti, H. S. et al. Genetic determinants of daytime napping and effects on cardiometabolic health. Nat. Commun. 12, 900 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu, Y. et al. GWAS of 89,283 individuals identifies genetic variants associated with self-reporting of being a morning person. Nat. Commun. 7, 10448 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lane, J. M. et al. Genome-wide association analysis identifies novel loci for chronotype in 100,420 individuals from the UK Biobank. Nat. Commun. 7, 10889 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jones, S. E. et al. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nat. Commun. 10, 343 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Campos, A. I. et al. Insights into the aetiology of snoring from observational and genetic investigations in the UK Biobank. Nat. Commun. 11, 817 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jones, S. E. et al. Genetic studies of accelerometer-based sleep measures yield new insights into human sleep behaviour. Nat. Commun. 10, 1585 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jones, S. E. et al. Genome-wide association analyses in 128,266 individuals identifies new morningness and sleep duration loci. PLoS Genet. 12, e1006125 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Van Hout, C. V. et al. Exome sequencing and characterization of 49,960 individuals in the UK Biobank. Nature 586, 749–756 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599, 628–634 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou, W. et al. SAIGE-GENE+ improves the efficiency and accuracy of set-based rare variant association tests. Nat. Genet. 54, 1466–1469 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weiner, D. J. et al. Polygenic architecture of rare coding variation across 394,783 exomes. Nature 614, 492–499 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Strausz, S. et al. Genetic analysis of obstructive sleep apnoea discovers a strong association with cardiometabolic health. Eur. Respir. J. 57, 2003091 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. GTEx Consortium. The Genotype–Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article  Google Scholar 

  29. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Garcia, F. J. et al. Single-cell dissection of the human brain vasculature. Nature 603, 893–899 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. van Dijk, E. L., Jaszczyszyn, Y., Naquin, D. & Thermes, C. The third revolution in sequencing technology. Trends Genet. 34, 666–681 (2018).

    Article  PubMed  Google Scholar 

  32. Favara, D. M. et al. ADGRL4/ELTD1 silencing in endothelial cells induces ACLY and SLC25A1 and alters the cellular metabolic profile. Metabolites 9, 287 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Seugnet, L. et al. Notch signaling modulates sleep homeostasis and learning after sleep deprivation in Drosophila. Curr. Biol. 21, 835–840 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lampe, A. K. et al. Automated genomic sequence analysis of the three collagen VI genes: applications to Ullrich congenital muscular dystrophy and Bethlem myopathy. J. Med. Genet. 42, 108–120 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nadeau, A. et al. Natural history of Ullrich congenital muscular dystrophy. Neurology 73, 25–31 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Cescon, M., Chen, P., Castagnaro, S., Gregorio, I. & Bonaldo, P. Lack of collagen VI promotes neurodegeneration by impairing autophagy and inducing apoptosis during aging. Aging (Albany NY) 8, 1083–1101 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Gregorio, I. et al. Collagen VI deficiency causes behavioral abnormalities and cortical dopaminergic dysfunction. Dis. Models Mech. 15, dmm049481 (2022).

    Article  CAS  Google Scholar 

  38. Majcin Dorcikova, M., Duret, L. C., Pottié, E. & Nagoshi, E. Circadian clock disruption promotes the degeneration of dopaminergic neurons in male Drosophila. Nat. Commun. 14, 5908 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang, Y. et al. Endothelium-specific CYP2J2 overexpression attenuates age-related insulin resistance. Aging Cell 17, e12718 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Petrovan, R. J., Yuan, Y. & Curtiss, L. K. Expression of the Lyst(beige) mutation is atheroprotective in chow-fed apolipoprotein E-deficient mice. J. Lipid Res. 49, 429–437 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Leslie, E. J. et al. Expression and mutation analyses implicate ARHGAP29 as the etiologic gene for the cleft lip with or without cleft palate locus identified by genome-wide association on chromosome 1p22. Birth Defects Res. A 94, 934–942 (2012).

    Article  CAS  Google Scholar 

  42. Schneider, J. S. Altered expression of genes involved in ganglioside biosynthesis in substantia nigra neurons in Parkinson’s disease. PLoS ONE 13, e0199189 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cutillo, G., Saariaho, A.-H. & Meri, S. Physiology of gangliosides and the role of antiganglioside antibodies in human diseases. Cell. Mol. Immunol. 17, 313–322 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, P. et al. Family-based association analysis to finemap bipolar linkage peak on chromosome 8q24 using 2,500 genotyped SNPs and 15,000 imputed SNPs. Bipolar Disord. 12, 786–792 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu, C. et al. BCL9 and C9orf5 are associated with negative symptoms in schizophrenia: meta-analysis of two genome-wide association studies. PLoS ONE 8, e51674 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smirnova, L. et al. The difference in serum proteomes in schizophrenia and bipolar disorder. BMC Genomics 20, 535 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Valenstein, M. L. et al. Structure of the nutrient-sensing hub GATOR2. Nature 607, 610–616 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. He, A. et al. Acetyl-CoA derived from hepatic peroxisomal β-oxidation inhibits autophagy and promotes steatosis via mTORC1 activation. Mol. Cell 79, 30–42.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Patke, A., Young, M. W. & Axelrod, S. Molecular mechanisms and physiological importance of circadian rhythms. Nat. Rev. Mol. Cell Biol. 21, 67–84 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Ding, F. et al. Changes in the composition of brain interstitial ions control the sleep–wake cycle. Science 352, 550–555 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nielsen, F. H., Johnson, L. K. & Zeng, H. Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep. Magnes. Res. 23, 158–168 (2010).

    PubMed  Google Scholar 

  52. Cullell, N. et al. Sleep/wake cycle alterations as a cause of neurodegenerative diseases: a Mendelian randomization study. Neurobiol. Aging 106, 320.e1–320.e12 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Cox, S. R. et al. Sleep and cognitive aging in the eighth decade of life. Sleep 42, zsz019 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Spano, G. M. et al. Sleep deprivation by exposure to novel objects increases synapse density and axon–spine interface in the hippocampal CA1 region of adolescent mice. J. Neurosci. 39, 6613–6625 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sato, T. & Sato, S. Circadian regulation of metabolism: commitment to health and diseases. Endocrinology 164, bqad086 (2023).

    Article  PubMed  Google Scholar 

  56. Tahara, Y., Otsuka, M., Fuse, Y., Hirao, A. & Shibata, S. Refeeding after fasting elicits insulin-dependent regulation of Per2 and Rev-erbα with shifts in the liver clock. J. Biol. Rhythms 26, 230–240 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Rowlands, A. V. et al. Accelerometer-assessed physical activity in epidemiology: are monitors equivalent? Med. Sci. Sports Exerc. 50, 257–265 (2018).

    Article  PubMed  Google Scholar 

  58. Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Batty, G. D., Gale, C. R., Kivimäki, M., Deary, I. J. & Bell, S. Comparison of risk factor associations in UK Biobank against representative, general population based studies with conventional response rates: prospective cohort study and individual participant meta-analysis. Br. Med. J. 368, m131 (2020).

    Article  Google Scholar 

  60. Schoeler, T. et al. Participation bias in the UK Biobank distorts genetic associations and downstream analyses. Nat. Hum. Behav. 7, 1216–1227 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jurgens, S. J. et al. Analysis of rare genetic variation underlying cardiometabolic diseases and traits among 200,000 individuals in the UK Biobank. Nat. Genet. 54, 240–250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M. & Ng, P. C. SIFT missense predictions for genomes. Nat. Protoc. 11, 1–9 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Adzhubei, I., Jordan, D. M. & Sunyaev, S. R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. 76, 7.20.1–7.20.41 (2013).

    Google Scholar 

  66. Chun, S. & Fay, J. C. Identification of deleterious mutations within three human genomes. Genome Res. 19, 1553–1561 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schwarz, J. M., Rodelsperger, C., Schuelke, M. & Seelow, D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods 7, 575–576 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Kosmicki, J. A. et al. Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. Nat. Genet. 49, 504–510 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ioannidis, N. M. et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am. J. Hum. Genet. 99, 877–885 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innov. (Camb.) 2, 100141 (2021).

    CAS  Google Scholar 

  72. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Singh, T. et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 604, 509–516 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all UK Biobank participants for their time and UK Biobank team members for collating the data. We thank the participants and investigators of the FinnGen study. Z.-L.H. was supported by grants from the Science and Technology Innovation 2030 Major Projects (no. 2021ZD0203400). J.-T.Y. was supported by grants from the Science and Technology Innovation 2030 Major Projects (no. 2022ZD0211600), the National Natural Science Foundation of China (nos 82071201, 81971032 and 92249305), the Shanghai Municipal Science and Technology Major Project (no. 2018SHZDZX01), the Research Start-Up Fund of Huashan Hospital (no. 2022QD002), the Excellence 2025 Talent Cultivation Program at Fudan University (no. 3030277001), Shanghai Talent Development Funding for the Project (no. 2019074), and the Zhangjiang Lab, Tianqiao and Chrissy Chen Institute, and the State Key Laboratory of Neurobiology and Frontiers Center for Brain Science of Ministry of Education, Fudan University. W.C. was supported by grants from the National Natural Science Foundation of China (no. 82071997) and the Shanghai Rising-Star Program (no. 21QA1408700). J.-F.F. was supported by the National Key R&D Program of China (nos 2018YFC1312904 and 2019YFA0709502), the Shanghai Municipal Science and Technology Major Project (no. 2018SHZDZX01), the 111 Project (no. B18015), the Shanghai Center for Brain Science and Brain-Inspired Technology and the Zhangjiang Lab. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

W.C. and J.-T.Y. designed the study. C.-J.F., Z.-Y.L., J.N. and L.Y. conducted the main analysis. C.-J.F., Z.-Y.L., J.N., L.Y., J.Y. and S.-D.C. drafted the manuscript. B.-S.W., J.-J.K., W.-S.L. and X.-Y.H. contributed to the data collection and analysis. W.C., J.-T.Y., J.-F.F., Z.-L.H. and H.Y. critically revised the manuscript. All authors reviewed and approved the final version.

Corresponding authors

Correspondence to Jin-Tai Yu or Wei Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Methods.

Reporting Summary

Supplementary Data 1

Supplementary Tables 1–25.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, CJ., Li, ZY., Ning, J. et al. Exome sequencing identifies genes associated with sleep-related traits. Nat Hum Behav 8, 576–589 (2024). https://doi.org/10.1038/s41562-023-01785-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-023-01785-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing