Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The challenges and prospects of brain-based prediction of behaviour

Abstract

Relating individual brain patterns to behaviour is fundamental in system neuroscience. Recently, the predictive modelling approach has become increasingly popular, largely due to the recent availability of large open datasets and access to computational resources. This means that we can use machine learning models and interindividual differences at the brain level represented by neuroimaging features to predict interindividual differences in behavioural measures. By doing so, we could identify biomarkers and neural correlates in a data-driven fashion. Nevertheless, this budding field of neuroimaging-based predictive modelling is facing issues that may limit its potential applications. Here we review these existing challenges, as well as those that we anticipate as the field develops. We focus on the impacts of these challenges on brain-based predictions. We suggest potential solutions to address the resolvable challenges, while keeping in mind that some general and conceptual limitations may also underlie the predictive modelling approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Model development and validation for neuroimaging-based psychometric predictions.
Fig. 2: Prediction accuracies measured by Pearson’s correlation.
Fig. 3: Visualizations of model interpretations.

References

  1. Sui, J., Jiang, R., Bustillo, J. & Calhoun, V. Neuroimaging-based individualized prediction of cognition and behavior for mental disorders and health: methods and promises. Biol. Psychiatry 88, 818–828 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yeung, A. W. K., More, S., Wu, J. & Eickhoff, S. B. Reporting details of neuroimaging studies on individual traits prediction: a literature survey. NeuroImage 256, 119275 (2022).

    Article  PubMed  Google Scholar 

  3. Cirillo, D. & Valencia, A. Big data analytics for personalized medicine. Curr. Opin. Biotechnol. 58, 161–167 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Dadi, K. et al. Benchmarking functional connectome-based predictive models for resting-state fMRI. NeuroImage 192, 115–134 (2019).

    Article  PubMed  Google Scholar 

  5. Dhamala, E., Yeo, B. T. T. & Holmes, A. J. One size does not fit all: methodological considerations for brain-based predictive modelling in psychiatry. Biol. Psychiatry 93, 717–728 (2023).

    Article  PubMed  Google Scholar 

  6. Rosenberg, M. D. et al. A neuromarker of sustained attention from whole-brain functional connectivity. Nat. Neurosci. 19, 165–171 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Lee, M. H., Smyser, C. D. & Shimony, J. S. Resting-state fMRI: a review of methods and clinical applications. Am. J. Neuroradiol. 34, 1866–1872 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ferguson, M. A., Anderson, J. S. & Spreng, R. N. Fluid and flexible minds: intelligence reflects synchrony in the brain’s intrinsic network architecture. Netw. Neurosci. 1, 192–207 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li, J. et al. A neuromarker of individual general fluid intelligence from the white-matter functional connectome. Transl. Psychiatry 10, 147 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kumar, S. et al. An information network flow approach for measuring functional connectivity and predicting behavior. Brain Behav. 9, e01346 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rosenberg, M. D. et al. Functional connectivity predicts changes in attention observed across minutes, days, and months. Proc. Natl Acad. Sci. USA 117, 3797–3807 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Avery, E. W. et al. Distributed patterns of functional connectivity predict working memory performance in novel healthy and memory-impaired individuals. J. Cogn. Neurosci. 32, 241–255 (2020).

    Article  PubMed  Google Scholar 

  14. Pläschke, R. N. et al. Age differences in predicting working memory performance from network-based functional connectivity. Cortex 132, 441–459 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang, H. et al. Do intrinsic brain functional networks predict working memory from childhood to adulthood? Hum. Brain Mapp. 41, 4574–4586 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Girault, J. B. et al. White matter connectomes at birth accurately predict cognitive abilities at age 2. NeuroImage 192, 145–155 (2019).

    Article  PubMed  Google Scholar 

  17. Jiang, R. et al. Multimodal data revealed different neurobiological correlates of intelligence between males and females. Brain Imaging Behav. 14, 1979–1993 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rasero, J., Sentis, A. I., Yeh, F. C. & Verstynen, T. Integrating across neuroimaging modalities boosts prediction accuracy of cognitive ability. PLoS Comput. Biol. 17, e1008347 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wei, L. et al. Grey matter volume in the executive attention system predict individual differences in effortful control in young adults. Brain Topogr. 32, 111–117 (2019).

    Article  PubMed  Google Scholar 

  20. Kaufmann, T. et al. Task modulations and clinical manifestations in the brain functional connectome in 1615 fMRI datasets. NeuroImage 147, 243–252 (2017).

    Article  PubMed  Google Scholar 

  21. Xiao, Y. et al. Predicting visual working memory with multimodal magnetic resonance imaging. Hum. Brain Mapp. 42, 1446–1462 (2021).

    Article  PubMed  Google Scholar 

  22. Scheinost, D. et al. Ten simple rules for predictive modeling of individual differences in neuroimaging. NeuroImage 193, 35–45 (2019).

    Article  PubMed  Google Scholar 

  23. Gabrieli, J. D. E., Ghosh, S. S. & Whitfield-Gabrieli, S. Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience. Neuron 85, 11–26 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pervaiz, U., Vidaurre, D., Woolrich, M. W. & Smith, S. M. Optimising network modelling methods for fMRI. NeuroImage 221, 116604 (2020).

    Article  Google Scholar 

  25. Poldrak, R. A., Huckins, G. & Varoquax, G. Establishment of best practices for evidence for prediction: a review. J. Am. Med. Assoc. Psychiatry 77, 534–540 (2020).

    Google Scholar 

  26. Sripada, C. et al. Prediction of neurocognition in youth from resting state fMRI. Mol. Psychiatry 25, 3413–3421 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. He, T. et al. Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics. NeuroImage 206, 116276 (2020).

    Article  PubMed  Google Scholar 

  28. He, L. et al. Functional connectome prediction of anxiety related to the COVID-19 pandemic. Am. J. Psychiatry 178, 530–540 (2021).

    Article  PubMed  Google Scholar 

  29. Gao, S., Greene, A. S., Constable, R. T. & Scheinost, D. Combining multiple connectomes improves predictive modeling of phenotypic measures. NeuroImage 201, 116038 (2019).

    Article  PubMed  Google Scholar 

  30. Zalesky, A., Fornito, A., Cocchi, L., Gollo, L. L. & Breakspear, M. Time-resolved resting-state brain networks. Proc. Natl Acad. Sci. USA 111, 10341–10346 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bahg, G., Evans, D. G., Galdo, M. & Turner, B. M. Gaussian process linking functions for mind, brain, and behavior. Proc. Natl Acad. Sci. USA 117, 29398–29406 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mihalik, A. et al. Canonical correlation analysis and partial least squares for identifying brain–behaviour associations: a tutorial and a comparative study. Biol. Psychiatry 7, 1055–1067 (2022).

    Google Scholar 

  33. Gal, S., Tik, N., Bernstein-Eliav, M. & Tavor, I. Predicting individual traits from unperformed tasks. NeuroImage 249, 118920 (2022).

    Article  PubMed  Google Scholar 

  34. He, T. et al. Meta-matching as a simple framework to translate phenotypic predictive models from big to small data. Nat. Neurosci. 25, 795–804 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takagi, Y., Hirayama, J. I. & Tanaka, S. C. State-unspecific patterns of whole-brain functional connectivity from resting and multiple task states predict stable individual traits. NeuroImage 201, 116036 (2019).

    Article  PubMed  Google Scholar 

  36. Burr, D. A. et al. Functional connectivity predicts the dispositional use of expressive suppression but not cognitive reappraisal. Brain Behav. 10, e01493 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jiang, R. et al. Task-induced brain connectivity promotes the detection of individual differences in brain–behavior relationships. NeuroImage 207, 116370 (2020).

    Article  PubMed  Google Scholar 

  38. Ooi, L. Q. R. et al. Comparison of individualized behavioral predictions across anatomical, diffusion and functional connectivity MRI. NeuroImage 263, 119636 (2022).

    Article  PubMed  Google Scholar 

  39. Dhamala, E., Jamison, K. W., Jaywant, A., Dennis, S. & Kuceyeski, A. Distinct functional and structural connections predict crystallised and fluid cognition in healthy adults. Hum. Brain Mapp. 42, 3102–3118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mansour, L. S., Tian, Y., Yeo, B. T. T., Cropley, V. & Zalesky, A. High-resolution connectomic fingerprints: mapping neural identity and behavior. NeuroImage 229, 117695 (2021).

    Article  Google Scholar 

  41. Pat, N. et al. Longitudinally stable, brain-based predictive models mediate the relationships between childhood cognition and socio-demographic, psychological and genetic factors. Hum. Brain Mapp. 43, 5520–5542 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hurtz, G. M. & Donovan, J. J. Personality and job performance: the Big Five revisited. J. Appl. Psychol. 85, 869–879 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Kane, M. J., Conway, A. R. A., Miura, T. K. & Colflesh, G. J. H. Working memory, attention control, and the n-back task: a question of construct validity. J. Exp. Psychol. 33, 615–622 (2007).

    Google Scholar 

  44. Sanchez-Cubillo, I. et al. Construct validity of the Trail Making Test: role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J. Int. Neuropsychol. Soc. 15, 438–450 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, J. et al. Shared and unique brain network features predict cognitive, personality, and mental health scores in the ABCD study. Nat. Commun. 13, 2217 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu, J. et al. A connectivity-based psychometric prediction framework for brain–behavior relationship studies. Cereb. Cortex 31, 3732–3751 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Noble, S., Scheinost, D. & Constable, R. T. A decade of test–retest reliability of functional connectivity: a systematic review and meta-analysis. NeuroImage 203, 116157 (2019).

    Article  PubMed  Google Scholar 

  48. Elliott, M. L. et al. What is the test–retest reliability of common task-functional MRI measures? New empirical evidence and a meta-analysis. Psychol. Sci. 31, 792–806 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Patriat, R. et al. The effect of resting condition on resting-state fMRI reliability and consistency: a comparison between resting with eyes open, closed, and fixated. NeuroImage 78, 463–473 (2013).

    Article  PubMed  Google Scholar 

  50. Birn, R. M. et al. The effect of scan length on the reliability of resting-state fMRI connectivity estimates. NeuroImage 83, 550–558 (2013).

    Article  PubMed  Google Scholar 

  51. Bennett, C. M. & Miller, M. B. fMRI reliability: influences of task and experimental design. Cogn. Affect. Behav. Neurosci. 13, 690–702 (2013).

    Article  PubMed  Google Scholar 

  52. Cremers, H. R., Wager, T. D. & Yarkoni, T. The relation between statistical power and inference in fMRI. PLoS ONE 12, e0184923 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kharabian Masouleh, S., Eickhoff, S. B., Hoffstaedter, F. & Genon, S., Alzheimer’s Disease Neuroimaging Initiative. Empirical examination of the replicability of associations between brain structure and psychological variables. eLife 8, e43464 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Genon, S., Eickhoff, S. B. & Kahrabian, S. Linking interindividual variability in brain structure to behaviour. Nat. Rev. Neurosci. 23, 307–318 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Beaty, R. E. et al. Robust prediction of individual creative ability from brain functional connectivity. Proc. Natl Acad. Sci. USA 115, 1087–1092 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu, P. et al. The functional connectome predicts feeling of stress on regular days and during the COVID-19 pandemic. Neurobiol. Stress 14, 100285 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Ren, Z. et al. Connectome-based predictive modeling of creativity anxiety. NeuroImage 225, 117469 (2021).

    Article  PubMed  Google Scholar 

  59. Fong, A. H. C. et al. Dynamic functional connectivity during task performance and rest predicts individual differences in attention across studies. NeuroImage 188, 14–25 (2019).

    Article  PubMed  Google Scholar 

  60. Wu, J. et al. Cross-cohort replicability and generalizability of connectivity-based psychometric prediction patterns. NeuroImage 262, 119569 (2022).

    Article  PubMed  Google Scholar 

  61. Tervo-Clemmens, B. et al. Reply to: Multivariate BWAS can be replicable with moderate sample sizes. Nature 615, E8–E12 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rosenberg, M. D. & Finn, E. S. How to establish robust brain–behavior relationships without thousands of individuals. Nat. Neurosci. 25, 835–837 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Spisak, T., Bingel, U. & Wager, T. Replicable multivariate BWAS with moderate sample sizes. Preprint at bioRxiv https://doi.org/10.1101/2022.06.22.497072 (2022).

  64. Van Essen, D. C. et al. The WU-Minh Human Connectome Project: an overview. NeuroImage 80, 62–79 (2013).

    Article  PubMed  Google Scholar 

  65. Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80, 105–124 (2013).

    Article  PubMed  Google Scholar 

  66. Harms, M. P. et al. Extending the Human Connectome Project across ages: imaging protocols for the lifespan development and aging projects. NeuroImage 183, 972–984 (2018).

    Article  PubMed  Google Scholar 

  67. Chouldechova, A., Benavides-Prado, D., Fialko, O. & Vaithianathan, R. A case study of algorithm-assisted decision making in child maltreatment hotline screening decisions. Proc. Mach. Learn. Res. 81, 134–148 (2018).

    Google Scholar 

  68. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate healthy disparities. Nat. Genet. 51, 584–591 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Obermeyer, Z., Powers, B., Vogeli, C. & Mullainathan, S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 366, 447–453 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Li, J. et al. Cross-ethnicity/race generalization failure of behavioral prediction from resting-state functional connectivity. Sci. Adv. 8, eabj1812 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Greene, A. S. et al. Brain-phenotype models fail for individuals who defy sample stereotypes. Nature 609, 109–118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Greene, A. S., Gao, S., Scheinost, D. & Constable, R. T. Task-induced brain state manipulation improves prediction of individual traits. Nat. Commun. 9, 2807 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nostro, A. D. et al. Predicting personality from network-based resting-state functional connectivity. Brain Struct. Funct. 223, 2699–2719 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tian, Y. & Zalesky, A. Machine learning prediction of cognition from functional connectivity: are feature weights reliable? NeuroImage 245, 118648 (2021).

    Article  PubMed  Google Scholar 

  75. Haufe, S. et al. On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage 87, 96–110 (2014).

    Article  PubMed  Google Scholar 

  76. Chen, J. et al. Relationship between prediction accuracy and feature importance reliability: an empirical and theoretical study. NeuroImage 274, 120115 (2023).

    Article  PubMed  Google Scholar 

  77. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  78. Yip, S. W., Kiluk, B. & Scheinost, D. Towards addiction prediction: an overview of cross-validated predictive modeling findings and considerations for future neuroimaging research. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 748–758 (2020).

    PubMed  Google Scholar 

  79. Jiang, R., Woo, C. W., Qi, S., Wu, J. & Sui, J. Interpreting brain biomarkers: challenges and solutions in interpreting machine learning-based predictive neuroimaging. IEEE Signal Process. Mag. 39, 107–118 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chormai, P. et al. Machine learning of large-scale multimodal brain imaging data reveals neural correlates of hand preference. NeuroImage 262, 119534 (2022).

    Article  PubMed  Google Scholar 

  81. Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 301–320 (2005).

    Article  Google Scholar 

  82. Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model prediction. In Advances in Neural Information Processing Systems 30 (NIPS 2017) (eds Guyon, I. et al.) (Curran Associates, 2017).

  83. Pat, N., Wang, Y., Bartonicek, A., Candia, J. & Stringaris, A. Explainable machine learning approach to predict and explain the relationship between task-based fMRI and individual differences in cognition. Cereb. Cortex 33, 2682–2703 (2023).

    Article  PubMed  Google Scholar 

  84. Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Preprint at arXiv https://doi.org/10.48550/arXiv.1312.6114 (2013).

  85. Goodfellow, I. J. et al. Generative adversarial networks. Commun. ACM 63, 139–144 (2020).

    Article  Google Scholar 

  86. van den Oord, A., Kalchbrenner, N. & Kavukcuoglu, K. Pixel recurrent neural networks. In Proceedings of the 33rd International Conference on Machine Learning (eds Balcan, M. F. & Weinberger, K. Q.) 48 1747–1756 (Proceedings of Machine Learning Research, 2016).

  87. Fried, D. et al. Speaker-follower models for vision-and-language navigation. In Advances in Neural Information Processing Systems 31 (NeurIPS 2018) (eds Bengio, S. et al.) (Curran Associates, 2018).

  88. Rosenblatt, M. et al. Connectome-based machine learning models are vulnerable to subtle data manipulations. Patterns (in the press).

  89. Finlayson, S. G. et al. Adversarial attacks on medical machine learning. Science 363, 1287–1289 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Finlayson, S. G., Chung, H. W., Kohane, I. S. & Beam, A. L. Adversarial attacks against medical deep learning systems. Preprint at arXiv https://doi.org/10.48550/arXiv.1804.05296 (2019).

  91. Dubois, J., Galdi, P., Han, Y., Paul, L. K. & Adolphs, R. Resting-state functional brain connectivity best predicts the personality dimension of openness to experience. Pers. Neurosci. 1, E6 (2018).

    Google Scholar 

  92. Jiang, R. et al. Connectome-based individualized prediction of temperament trait scores. NeuroImage 183, 366–374 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (GE 2835/2–1, EI 816/ 4–1), the Helmholtz Portfolio Theme ‘Supercomputing and Modelling for the Human Brain’ and the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement no. 720270 (HBP SGA1) and grant agreement no. 785907 (HBP SGA2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianxiao Wu or Sarah Genon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Li, J., Eickhoff, S.B. et al. The challenges and prospects of brain-based prediction of behaviour. Nat Hum Behav 7, 1255–1264 (2023). https://doi.org/10.1038/s41562-023-01670-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-023-01670-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing