Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evidence for early dispersal of domestic sheep into Central Asia

Abstract

The development and dispersal of agropastoralism transformed the cultural and ecological landscapes of the Old World, but little is known about when or how this process first impacted Central Asia. Here, we present archaeological and biomolecular evidence from Obishir V in southern Kyrgyzstan, establishing the presence of domesticated sheep by ca. 6,000 BCE. Zooarchaeological and collagen peptide mass fingerprinting show exploitation of Ovis and Capra, while cementum analysis of intact teeth implicates possible pastoral slaughter during the fall season. Most significantly, ancient DNA reveals these directly dated specimens as the domestic O. aries, within the genetic diversity of domesticated sheep lineages. Together, these results provide the earliest evidence for the use of livestock in the mountains of the Ferghana Valley, predating previous evidence by 3,000 years and suggesting that domestic animal economies reached the mountains of interior Central Asia far earlier than previously recognized.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Modeled dispersal of domestic animals into Central Asia.
Fig. 2: Stratigraphic profile of Obishir V.
Fig. 3: Identification of animal remains at Obishir V by ZooMS.
Fig. 4: Cementum analysis of sheep and goat remains from Obishir V.
Fig. 5: PCA results of Obishir V sheep and goat samples.
Fig. 6: Phylogenetic tree produced using maximum parsimony.

Data availability

Shotgun sequencing raw files are available at the European Nucleotide Archive (ENA) database under accession number PRJEB41594.

References

  1. 1.

    Asouti, E. & Fuller, D. Q. A contextual approach to the emergence of agriculture in southwest Asia: reconstructing early Neolithic plant-food production. Curr. Anthropol. 54, 299–345 (2013).

    Google Scholar 

  2. 2.

    Conolly, J. et al. Meta-analysis of zooarchaeological data from SW Asia and SE Europe provides insight into the origins and spread of animal husbandry. J. Archaeol. Sci. 38, 538–545 (2011).

    Google Scholar 

  3. 3.

    Larson, G. et al. Current perspectives and the future of domestication studies. Proc. Natl Acad. Sci. U. S. A. 111, 6139–6146 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Willcox, G. Measuring grain size and identifying Near Eastern cereal domestication: evidence from the Euphrates Valley. J. Archaeol. Sci. 31, 145–150 (2004).

    Google Scholar 

  5. 5.

    Willcox, G. & Stordeur, D. Large-scale cereal processing before domestication during the tenth millennium cal BC in northern Syria. Antiquity 86, 99–114 (2012).

    Google Scholar 

  6. 6.

    Larson, G. & Fuller, D. Q. The evolution of animal domestication. Annu. Rev. Ecol. Evol. Syst. 45, 115–136 (2014).

    Google Scholar 

  7. 7.

    Bocquet‐Appel, J. Paleoanthropological traces of a Neolithic demographic transition. Curr. Anthropol. 43, 637–650 (2002).

    Google Scholar 

  8. 8.

    Bellwood, P. First Farmers: the Origins of Agricultural Societies (Wiley, 2004).

  9. 9.

    Omrak, A. et al. Genomic evidence establishes Anatolia as the source of the European Neolithic gene pool. Curr. Biol. 26, 270–275 (2016).

    CAS  PubMed  Google Scholar 

  10. 10.

    Olalde, I. et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science 363, 1230–1234 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Brace, S. et al. Ancient genomes indicate population replacement in early Neolithic Britain. Nat. Ecol. Evol. 3, 765–771 (2019).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Zeder, M. A. & Hesse, B. The initial domestication of goats (Capra hircus) in the Zagros mountains 10,000 years ago. Science 287, 2254–2257 (2000).

    CAS  PubMed  Google Scholar 

  13. 13.

    Daly, K. G. et al. Ancient goat genomes reveal mosaic domestication in the Fertile Crescent. Science 361, 85–88 (2018).

    CAS  PubMed  Google Scholar 

  14. 14.

    Alberto, F. J. et al. Convergent genomic signatures of domestication in sheep and goats. Nat. Commun. 9, 813 (2018).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Zeder, M. A. in Human Dispersal and Species Movement: from Prehistory to the Present (eds Petraglia, M.D., Crassard, R. & Boivin, N.) p. 261 (Cambridge Univ. Press, 2017).

  16. 16.

    Vigne, J.-D. Early domestication and farming: what should we know or do for a better understanding? Anthropozoologica 50, 123–151 (2015).

    Google Scholar 

  17. 17.

    Pereira, F. & Amorim, A. Encyclopedia of Life Sciences https://doi.org/10.1002/9780470015902.a0022864 (2010).

  18. 18.

    Hermes, T. R. et al. Mitochondrial DNA of domesticated sheep confirms pastoralist component of Afanasievo subsistence economy in the Altai Mountains (3300–2900 cal BC). Archaeol. Res. Asia 24, 100232 (2020).

    Google Scholar 

  19. 19.

    Wilkin, S. et al. Dairy pastoralism sustained eastern Eurasian steppe populations for 5,000 years. Nat. Ecol. Evol. 4, 346–355 (2020).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Hermes, T. R. et al. Early integration of pastoralism and millet cultivation in Bronze Age Eurasia. Proc. Biol. Sci. 286, 20191273 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Taylor, W. et al. Early pastoral economies along the Ancient Silk Road: biomolecular evidence from the Alay Valley, Kyrgyzstan. PLoS ONE 13, e0205646 (2018).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Spengler, R. N. & Willcox, G. Archaeobotanical results from Sarazm, Tajikistan, an early Bronze Age settlement on the edge: agriculture and exchange. Environ. Archaeol. 18, 211–221 (2013).

    Google Scholar 

  23. 23.

    Korobkova, G. F. Tools and Economy of the Neolithic Populations in Central Asia (Nauka, 1969).

  24. 24.

    Masson, V. M. The Jeitun Settlement: the Emergence of a Productive Economy (Nauka, 1971).

  25. 25.

    Itina, M.A. History of Steppe Tribes of Southern Aral Sea Region (2–1 Ka BP) (Nauka, 1977).

  26. 26.

    Lamberg-Karlovsky, C. C. The Bronze Age khanates of Central Asia. Antiquity 68, 398–405 (1994).

    Google Scholar 

  27. 27.

    Brunet, F. Pour une nouvelle étude de la culture néolithique de Kel’teminar. Ouzbékistan. Paléorient 31, 87–105 (2005).

    Google Scholar 

  28. 28.

    Masson, V. M. The Bronze Age in Khorasan. Hist. Civiliz. Cent. Asia 1, 225 (1999).

    Google Scholar 

  29. 29.

    Ranov, V. A. Hissar culture - Neolithic mountain regions of Central Asia. in Stone Age of Northern, Middle and Eastern Asia 27–28 (Nauka, 1985).

  30. 30.

    Yablonsky, L. T. Kelteminar craniology. Intra-group analysis. Sov. Ethnogr., Mosc., USSR Acad. Sci. 2, 127–140 (1985).

    Google Scholar 

  31. 31.

    Vinogradov, A. V. Drevnie okhotniki i rybolovy Sredneaziatskogo Mezhdurechija (Former hunters and fishermen of Central Asian Mesopotamia) (Nauka (Science), 1981a).

  32. 32.

    Vinogradov, A. V. in Kul ‘tura i iskusstvo drevnego Khorezma (Culture and Art of Ancient Khoresam) (eds Itina, M. A., Raporort, J. A. et al.) pp. 88–98 (1981b).

  33. 33.

    Harris, D. R., Origins of Agriculture in Western Central Asia https://doi.org/10.9783/9781934536513 (Univ. of Pennsylvania, 2010).

  34. 34.

    Dolukhanov, P. M. The ecological prerequisites for early farming in southern Turkmenia. Sov. Anthropol. Archeol. 19, 359–385 (1981).

    Google Scholar 

  35. 35.

    Lisitsina, G. N. in The Bronze Age Civilization of Central Asia: Recent Soviet Discoveries (ed. Kohl, P. L.) pp. 350–358 (M. E. Sharpe, 1981).

  36. 36.

    Larkum, M. in Origins of Agriculture in Western Central Asia: An Environmental–Archaeological Study (ed. Harris, D.) pp. 142–149 (Univ. of Pennsylvania Museum of Archaeology and Anthropology, 2010).

  37. 37.

    Ranov, V. A. & Korobkova, G. F., Tutkaul – multilayered settlement site of the Gissar culture in southern Tajikistan. Sov. Archaeol. 133–147 (1971).

  38. 38.

    Islamov, U. I., Obishirian Culture (FAN, 1980).

  39. 39.

    Fedorchenko, A. Y. et al. Personal ornament production technology in the early Holocene complexes of western Central Asia: insights from Obishir-5. Archaeol., Ethnol. Anthropol. Eurasia 46, 3–15 (2018).

    Google Scholar 

  40. 40.

    Szymczak, K. & Khudzhanazarov, M., Exploring the Neolithic of the Kyzyl-Kums. Ayakagytma “The Site” and other collections. Swiatowit Suppl. Ser. P: Prehistory and Middle Ages 11. Central Asia–Prehist. Stud (2006).

  41. 41.

    Buckley, M., Collins, M., Thomas-Oates, J. & Wilson, J. C. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 23, 3843–3854 (2009).

    CAS  PubMed  Google Scholar 

  42. 42.

    Kerven, C., Steimann, B., Ashley, L., Dear, C. & ur Rahim, I. Pastoralism and Farming in Central Asia’s Mountains: a Research Review (Univ. of Central Asia, 2011).

    Google Scholar 

  43. 43.

    Lieberman, D. E. Life history variables preserved in dental cementum microstructure. Science 261, 1162–1164 (1993).

    CAS  PubMed  Google Scholar 

  44. 44.

    Klevezal, G. A. Recording Structures of Mammals: Determination of Age and Reconstruction of Life History (A. A. Balkema, 1996).

  45. 45.

    Diekwisch, T. G. The developmental biology of cementum. Int. J. Dev. Biol. 45, 695–706 (2001).

    CAS  PubMed  Google Scholar 

  46. 46.

    Klevezal, G. & Kleinenberg, S. Age determination of mammals from annual layers in teeth and bones of mammals. Trans. from Russian by the Israel Program for Scientific Translations, Jerusalem (1969).

  47. 47.

    Grue, H. & Jensen, B., Review of the formation of incremental lines in tooth cementum of terrestrial mammals [age determination, game animal, variation, sex, reproductive cycle, climate, region, condition of the animal]. Dan. Rev. Game Biol. 11 (1979).

  48. 48.

    Stock, S. R. et al. Cementum structure in Beluga whale teeth. Acta Biomater. 48, 289–299 (2017).

    CAS  PubMed  Google Scholar 

  49. 49.

    Gordon, B. C. Of Men and Reindeer Herds in French Magdalenian Prehistory https://doi.org/10.30861/9780860545040 (BAR Publishing, 1988).

  50. 50.

    Pike-Tay, A. Red Deer Hunting in the Upper Paleolithic of South-West France: a Study in Seasonality (BAR Oxford, 1991).

  51. 51.

    Burke, A. & Castanet, J. Histological observations of cementum growth in horse teeth and their application to archaeology. J. Archaeol. Sci. 22, 479–493 (1995).

    Google Scholar 

  52. 52.

    Frachetti, M. D. Multiregional emergence of mobile pastoralism and nonuniform institutional complexity across Eurasia. Curr. Anthropol. 53, 2–38 (2012).

    Google Scholar 

  53. 53.

    Stiner, M. C. et al. A forager–herder trade-off, from broad-spectrum hunting to sheep management at Aşıklı Höyük, Turkey. Proc. Natl Acad. Sci. U. S. A. 111, 8404–8409 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Demirci, S. et al. Mitochondrial DNA diversity of modern, ancient and wild sheep (Ovis gmelinii anatolica) from Turkey: new insights on the evolutionary history of sheep. PLoS ONE 8, e81952 (2013).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Meadows, J. R. S., Hiendleder, S. & Kijas, J. W. Haplogroup relationships between domestic and wild sheep resolved using a mitogenome panel. Heredity 106, 700–706 (2011).

    CAS  PubMed  Google Scholar 

  56. 56.

    Cai, D. et al. Early history of Chinese domestic sheep indicated by ancient DNA analysis of Bronze Age individuals. J. Archaeol. Sci. 38, 896–902 (2011).

    Google Scholar 

  57. 57.

    Meadows, J. R. S., Cemal, I., Karaca, O., Gootwine, E. & Kijas, J. W. Five ovine mitochondrial lineages identified from sheep breeds of the Near East. Genetics 175, 1371–1379 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Bruford, M. W. & Townsend, S. J., in Documenting Domestication: New Genetic and Archaeological Paradigms (eds Zeder, M. A., Bradley, D. G. & Emshwiller, E. A.) pp 306–316 (Univ. of California Press, 2006).

  59. 59.

    Arbuckle, B. S. & Atici, L. Initial diversity in sheep and goat management in Neolithic south-western. Asia. Levant. 45, 219–235 (2013).

    Google Scholar 

  60. 60.

    Hesse, B. Slaughter patterns and domestication: the beginnings of pastoralism in western Iran. Man 17, 403–417 (1982).

    Google Scholar 

  61. 61.

    Fijn, N., Living with Herds: Human–Animal Coexistence in Mongolia (Cambridge Univ. Press, 2011).

  62. 62.

    Frachetti, M. D., Smith, C. E., Traub, C. M. & Williams, T. Nomadic ecology shaped the highland geography of Asia’s Silk Roads. Nature 543, 193 (2017).

    CAS  PubMed  Google Scholar 

  63. 63.

    Jerardino, A., Fort, J., Isern, N. & Rondelli, B. Cultural diffusion was the main driving mechanism of the Neolithic transition in Southern Africa. PLoS ONE 9, e113672 (2014).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    van Klinken, G. J. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 26, 687–695 (1999).

    Google Scholar 

  65. 65.

    Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

    CAS  Google Scholar 

  66. 66.

    Ramsey, C. B. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    CAS  Google Scholar 

  67. 67.

    Wintle, A. G. & Prószyńska, H. TL dating of loess in Germany and Poland. PACT 9, 547–554 (1983).

    Google Scholar 

  68. 68.

    Fedorowicz, S. et al. Loess–paleosol sequence at Korshiv (Ukraine): chronology based on complementary and parallel dating (TL, OSL), and litho-pedosedimentary analyses. Quat. Int. 296, 117–130 (2013).

    Google Scholar 

  69. 69.

    Frechen, M. Systematic thermoluminescence dating of two loess profiles from the Middle Rhine Area (FRG). Quat. Sci. Rev. 11, 93–101 (1992).

    Google Scholar 

  70. 70.

    Behrensmeyer, A. K. Taphonomic and ecologic information from bone weathering. Paleobiology 4, 150–162 (1978).

    Google Scholar 

  71. 71.

    van Doorn, N. L., Hollund, H. & Collins, M. J. A novel and non-destructive approach for ZooMS analysis: ammonium bicarbonate buffer extraction. Archaeol. Anthropol. Sci. 3, 281 (2011).

    Google Scholar 

  72. 72.

    Welker, F. et al. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. Proc. Natl Acad. Sci. U. S. A. 113, 11162–11167 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Rendu, W. Hunting behavior and Neanderthal adaptability in the Late Pleistocene site of Pech-de-l’Azé I. J. Archaeol. Sci. 37, 1798–1810 (2010).

    Google Scholar 

  74. 74.

    Stutz, A. J. Polarizing microscopy identification of chemical diagenesis in archaeological cementum. J. Archaeol. Sci. 29, 1327–1347 (2002).

    Google Scholar 

  75. 75.

    Geusa, G. et al. in Osteodental Biology of the People of Portus Romae (Necropolis of Isola Sacra, 2nd-3rd Cent. AD) (eds Bondioli, L. & Macchiarelli, R.) (Roma, 1999).

  76. 76.

    Lieberman, D. E., Deacon, T. W. & Meadow, R. H. Computer image enhancement and analysis of cementum increments as applied to teeth of Gazella gazella. J. Archaeol. Sci. 17, 519–533 (1990).

    Google Scholar 

  77. 77.

    Gorgé, O. et al. Analysis of ancient DNA in microbial ecology. Methods Mol. Biol. 1399, 289–315 (2016).

    PubMed  Google Scholar 

  78. 78.

    Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130624 (2015).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).

    CAS  PubMed  Google Scholar 

  80. 80.

    Ginolhac, A., Rasmussen, M., Gilbert, M. T. P., Willerslev, E. & Orlando, L. mapDamage: testing for damage patterns in ancient DNA sequences. Bioinformatics 27, 2153–2155 (2011).

    CAS  PubMed  Google Scholar 

  81. 81.

    Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Li, X. et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nat. Commun. 11, 2815 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Stecher, G., Tamura, K. & Kumar, S. Molecular evolutionary genetics analysis (MEGA) for macOS. Mol. Biol. Evol. 37, 1237–1239 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993).

    CAS  PubMed  Google Scholar 

  90. 90.

    Murphy, D. J. People, Plants and Genes: The Story of Crops and Humanity (Oxford Univ. Press, 2007).

  91. 91.

    Lv, F.-H. et al. Mitogenomic meta-analysis identifies two phases of migration in the history of eastern Eurasian sheep. Mol. Biol. Evol. 32, 2515–2533 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank D. Paul and S. Palstra for performing radiocarbon dating of tooth enamel, and E. Rannamäe for assistance with manuscript preparation. Cementum analyses were funded through the CemeNTAA project, via the French National Agency for Research (ANR-14-CE31-0011). Geological investigations were supported by the National Science Center, Poland (grant no. 2018/29/B/ST10/00906). Sampling for ZooMS, DNA and radiocarbon analysis (Golden Valley Laboratory) and lithic analysis of Obishir V were supported by RSF project no. 19-78-10053, ‘The emergence of food-producing economies in the high mountains of interior Central Asia’. Ancient DNA analyses were conducted with the support of the palaeogenomic platform from the UMR5199 PACEA Universite de Bordeaux and the European Research Council under the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 804884-DAIRYCULTURES. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

W.T.T.T. and S.Sh. designed the research, collected data, conducted analysis and wrote the manuscript. M.P., C.P., A.A., W.R., C.J., T.H., and C.W. collected data, conducted analysis and helped to write the manuscript. M.T.K., G.B., S.Sc., G.H., R.Sp., R.St., J.M., A.S., S.F., L.O., K.D. and A.K. collected data, conducted analysis and assisted in data interpretation. All authors reviewed the manuscript.

Corresponding authors

Correspondence to William T. T. Taylor or Svetlana Shnaider.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Human Behaviour thanks Suzanne Birch, Laurent Frantz and Eve Rannamae for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taylor, W.T.T., Pruvost, M., Posth, C. et al. Evidence for early dispersal of domestic sheep into Central Asia. Nat Hum Behav (2021). https://doi.org/10.1038/s41562-021-01083-y

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing