Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Registered Report
  • Published:

Evidence against benefits from cognitive training and transcranial direct current stimulation in healthy older adults

Abstract

Cognitive training and brain stimulation show promise for ameliorating age-related neurocognitive decline. However, evidence for this is controversial. In a Registered Report, we investigated the effects of these interventions, where 133 older adults were allocated to four groups (left prefrontal cortex anodal transcranial direct current stimulation (tDCS) with decision-making training, and three control groups) and trained over 5 days. They completed a task/questionnaire battery pre- and post-training, and at 1- and 3-month follow-ups. COMT and BDNF Val/Met polymorphisms were also assessed. Contrary to work in younger adults, there was evidence against tDCS-induced training enhancement on the decision-making task. Moreover, there was evidence against transfer of training gains to untrained tasks or everyday function measures at any post-intervention time points. As indicated by exploratory work, individual differences may have influenced outcomes. But, overall, the current decision-making training and tDCS protocol appears unlikely to lead to benefits for older adults.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CONSORT diagram.
Fig. 2: Decision-making task performance.
Fig. 3: Training performance.
Fig. 4: Far transfer task performance.
Fig. 5: Exploratory linear regressions.
Fig. 6: Exploratory genotype analyses.

Similar content being viewed by others

Data availability

All data files are available at: https://osf.io/e2u73.

Code availability

Analysis code is provided at: https://osf.io/e2u73.

References

  1. United Nations Development Programme. Human development report 2013: the rise of the South: human progress in a diverse world http://hdr.undp.org/sites/default/files/reports/14/hdr2013_en_complete.pdf (2013)

  2. Park, D. C. & Reuter-Lorenz, P. The adaptive brain: aging and neurocognitive scaffolding. Annu. Rev. Psychol. 60, 173–196 (2009).

    PubMed  PubMed Central  Google Scholar 

  3. Harper, S. Ageing Societies (Routledge, 2014).

  4. Kievit, R. A. et al. Distinct aspects of frontal lobe structure mediate age-related differences in fluid intelligence and multitasking. Nat. Commun. 5, 5658 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. DeCarli, C. Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment. Lancet Neurol. 2, 15–21 (2003).

    PubMed  Google Scholar 

  6. Kramer, J. H. et al. Longitudinal MRI and cognitive change in healthy elderly. Neuropsychology 21, 412–418 (2007).

    PubMed  PubMed Central  Google Scholar 

  7. Mungas, D. et al. Longitudinal volumetric MRI change and rate of cognitive decline. Neurology 65, 565–571 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Diamond, A. Executive functions. Annu. Rev. Psychol. 64, 135–168 (2013).

    PubMed  Google Scholar 

  9. Cahn-Weiner, D. A., Boyle, P. A. & Malloy, P. F. Tests of executive function predict instrumental activities of daily living in community-dwelling older individuals. Appl. Neuropsychol. 9, 187–191 (2002).

    PubMed  Google Scholar 

  10. Grigsby, J., Kaye, K., Baxter, J., Shetterly, S. M. & Hamman, R. F. Executive cognitive abilities and functional status among community-dwelling older persons in the San Luis Valley health and aging study. J. Am. Geriatr. Soc. 46, 590–596 (1998).

    CAS  PubMed  Google Scholar 

  11. Perceval, G., Flöel, A. & Meinzer, M. Can transcranial direct current stimulation counteract age-associated functional impairment? Neurosci. Biobehav. Rev. 65, 157–172 (2016).

    PubMed  Google Scholar 

  12. Jones, K. T., Stephens, J. A., Alam, M., Bikson, M. & Berryhill, M. E. Longitudinal neurostimulation in older adults improves working memory. PLoS ONE 10, e0121904 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. Stephens, J. A. & Berryhill, M. E. Older adults improve on everyday tasks after working memory training and neurostimulation. Brain Stimul. 9, 553–559 (2016).

    PubMed  PubMed Central  Google Scholar 

  14. Flöel, A., Rösser, N., Michka, O., Knecht, S. & Breitenstein, C. Noninvasive brain stimulation improves language learning. J. Cogn. Neurosci. 20, 1415–1422 (2008).

    PubMed  Google Scholar 

  15. Meinzer, M., Lindenberg, R., Antonenko, D., Flaisch, T. & Floel, A. Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes. J. Neurosci. 33, 12470–12478 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cohen Kadosh, R., Soskic, S., Iuculano, T., Kanai, R. & Walsh, V. Modulating neuronal activity produces specific and long-lasting changes in numerical competence. Curr. Biol. 20, 2016–2020 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Iuculano, T. & Cohen Kadosh, R. The mental cost of cognitive enhancement. J. Neurosci. 33, 4482 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Holland, R. & Crinion, J. Can tDCS enhance treatment of aphasia after stroke? Aphasiology 26, 1169–1191 (2012).

    PubMed  Google Scholar 

  19. Manor, B. et al. Reduction of dual-task costs by noninvasive modulation of prefrontal activity in healthy elders. J. Cogn. Neurosci. 28, 275–281 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. Harty, S. et al. Transcranial direct current stimulation over right dorsolateral prefrontal cortex enhances error awareness in older age. J. Neurosci. 34, 3646 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Filmer, H. L., Varghese, E., Hawkins, G. E., Mattingley, J. B. & Dux, P. E. Improvements in attention and decision-making following combined behavioral training and brain stimulation. Cereb. Cortex 27, 3675–3682 (2017).

    PubMed  Google Scholar 

  22. Russo, R., Wallace, D., Fitzgerald, P. B. & Cooper, N. R. Perception of comfort during active and sham transcranial direct current stimulation: a double blind study. Brain Stimul. 6, 946–951 (2013).

    PubMed  Google Scholar 

  23. Horvath, J. C., Carter, O. & Forte, J. D. Transcranial direct current stimulation: five important issues we aren’t discussing (but probably should be). Front. Syst. Neurosci. 8, 2 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. O’Connell, N. E. et al. Rethinking clinical trials of transcranial direct current stimulation: participant and assessor blinding is inadequate at intensities of 2mA. PLoS ONE 7, e47514 (2012).

    PubMed  PubMed Central  Google Scholar 

  25. Filmer, H. L., Dux, P. E. & Mattingley, J. B. Applications of transcranial direct current stimulation for understanding brain function. Trends Neurosci. 37, 742–753 (2014).

    CAS  PubMed  Google Scholar 

  26. Nilsson, J., Lebedev, A. V., Rydström, A. & Lövdén, M. Direct-current stimulation does little to improve the outcome of working memory training in older adults. Psychol. Sci. 28, 907–920 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Mancuso, L. E., Ilieva, I. P., Hamilton, R. H. & Farah, M. J. Does transcranial direct current stimulation improve healthy working memory?: A meta-analytic review. J. Cogn. Neurosci. 28, 1063–1089 (2016).

    PubMed  Google Scholar 

  28. Chambers, C. The Seven Deadly Sins of Psychology: A Manifesto for Reforming the Culture of Scientific Practice (Princeton Univ. Press, 2017).

  29. Antal, A. et al. Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin. Neurophysiol. 128, 1774–1809 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wagenmakers, E.-J. et al. Bayesian inference for psychology, part I: theoretical advantages and practical ramifications. Psychon. Bull. Rev. 25, 35–37 (2018).

    PubMed  Google Scholar 

  31. Jeffreys, H. The Theory of Probability (Oxford Univ. Press, 1961).

  32. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D. & Iverson, G. Bayesian t tests for accepting and rejecting the null hypothesis. Psychon. Bull. Rev. 16, 225–237 (2009).

    PubMed  Google Scholar 

  33. Berryhill, M. E. & Jones, K. T. tDCS selectively improves working memory in older adults with more education. Neurosci. Lett. 521, 148–151 (2012).

    CAS  PubMed  Google Scholar 

  34. Learmonth, G., Thut, G., Benwell, C. S. Y. & Harvey, M. The implications of state-dependent tDCS effects in aging: behavioural response is determined by baseline performance. Neuropsychologia 74, 108–119 (2015).

    PubMed  Google Scholar 

  35. Perceval, G., Martin, A. K., Copland, D. A., Laine, M. & Meinzer, M. Multisession transcranial direct current stimulation facilitates verbal learning and memory consolidation in young and older adults. Brain Lang. 205, 104788 (2020).

    PubMed  Google Scholar 

  36. Arciniega, H., Gözenman, F., Jones, K. T., Stephens, J. A. & Berryhill, M. E. Frontoparietal tDCS benefits visual working memory in older adults with low working memory capacity. Front. Aging Neurosci. 10, 57 (2018).

    PubMed  PubMed Central  Google Scholar 

  37. Woods, A., et al. in Practical Guide to Transcranial Direct Current Stimulation (eds. Knotkova, H., Nitsche, M. A., Biksom, M. & Woods, A.) 569–595 (Springer International, 2019).

  38. Indahlastari, A. et al. Modeling transcranial electrical stimulation in the aging brain. Brain Stimul. 13, 664–674 (2020).

    PubMed  Google Scholar 

  39. Emonson, M. R. L., Fitzgerald, P. B., Rogasch, N. C. & Hoy, K. E. Neurobiological effects of transcranial direct current stimulation in younger adults, older adults and mild cognitive impairment. Neuropsychologia 125, 51–61 (2019).

    CAS  PubMed  Google Scholar 

  40. Mahdavi, S. & Towhidkhah, F. Computational human head models of tDCS: influence of brain atrophy on current density distribution. Brain Stimul. 11, 104–107 (2018).

    PubMed  Google Scholar 

  41. Yu, J., Lam, C. L., Man, I. S., Shao, R. & Lee, T. M. Multi-session anodal prefrontal transcranial direct current stimulation does not improve executive functions among older adults. J. Int. Neuropsychol. Soc. 26, 372–381 (2019).

    PubMed  Google Scholar 

  42. Hanley, C. & Tales, A. Anodal tDCS improves attentional control in older adults. Brain Stimul. 12, 399 (2019).

    Google Scholar 

  43. Batsikadze, G., Moliadze, V., Paulus, W., Kuo, M. F. & Nitsche, M. A. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J. Physiol. 591, 1987–2000 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Reato, D. et al. in Practical Guide to Transcranial Direct Current Stimulation: Principles, Procedures and Applications (eds. H. Knotkova, M. A. Nitsche, M. Bikson, & A. J. Woods) 45–80 (Springer International, 2019).

  45. Boggio, P. S. et al. Modulation of decision-making in a gambling task in older adults with transcranial direct current stimulation. Eur. J. Neurosci. 31, 593–597 (2010).

    PubMed  Google Scholar 

  46. Fertonani, A., Brambilla, M., Cotelli, M. & Miniussi, C. The timing of cognitive plasticity in physiological aging: a tDCS study of naming. Front. Aging Neurosci. 6, 131 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. Manenti, R., Brambilla, M., Petesi, M., Ferrari, C. & Cotelli, M. Enhancing verbal episodic memory in older and young subjects after non-invasive brain stimulation. Front. Aging Neurosci. 5, 49 (2013).

    PubMed  PubMed Central  Google Scholar 

  48. Bikson, M. & Datta, A. Guidelines for precise and accurate computational models of tDCS. Brain Stimul. 5, 430–431 (2012).

    PubMed  Google Scholar 

  49. Raz, N., Rodrigue, K. M., Kennedy, K. M. & Land, S. Genetic and vascular modifiers of age-sensitive cognitive skills: effects of COMT, BDNF, ApoE, and hypertension. Neuropsychology 23, 105–116 (2009).

    PubMed  PubMed Central  Google Scholar 

  50. Plewnia, C. et al. Effects of transcranial direct current stimulation (tDCS) on executive functions: influence of COMT Val/Met polymorphism. Cortex 49, 1801–1807 (2013).

    PubMed  Google Scholar 

  51. Puri, R. et al. Duration-dependent effects of the BDNF Val66Met polymorphism on anodal tDCS induced motor cortex plasticity in older adults: a group and individual perspective. Front. Aging Neurosci. 7, 107 (2015).

    PubMed  PubMed Central  Google Scholar 

  52. Oldfield, R. C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113 (1971).

    CAS  Google Scholar 

  53. Dipietro, L., Caspersen, C. J., Ostfeld, A. M. & Nadel, E. R. A survey for assessing physical activity among older adults. Med. Sci. Sports Exerc. 25, 628–642 (1993).

    CAS  PubMed  Google Scholar 

  54. Barnett, S. M. & Ceci, S. J. When and where do we apply what we learn?: A taxonomy for far transfer. Psychol. Bull. 128, 612–637 (2002).

    PubMed  Google Scholar 

  55. Kennedy, K. M. & Raz, N. Aging white matter and cognition: differential effects of regional variations in diffusion properties on memory, executive functions, and speed. Neuropsychologia 47, 916–927 (2009).

    PubMed  PubMed Central  Google Scholar 

  56. Bherer, L. et al. Training effects on dual-task performance: are there age-related differences in plasticity of attentional control? Psychol. Aging 20, 695–709 (2005).

    PubMed  Google Scholar 

  57. Dux, P. E., Asplund, C. L. & Marois, R. Both exogenous and endogenous target salience manipulations support resource depletion accounts of the attentional blink. J. Vis. 9, 120–120 (2009).

    Google Scholar 

  58. Potter, M. C. Short-term conceptual memory for pictures. J. Exp. Psychol. Hum. Learn. Mem. 2, 509 (1976).

    CAS  Google Scholar 

  59. Potter, M. C. Very short-term conceptual memory. Mem. Cogn. 21, 156–161 (1993).

    CAS  Google Scholar 

  60. Lahar, C. J., Isaak, M. I. & McArthur, A. D. Age differences in the magnitude of the attentional blink. Aging Neuropsychol. Cogn. 8, 149–159 (2001).

    Google Scholar 

  61. Bender, A., Filmer, H., Garner, K., Naughtin, C. & Dux, P. On the relationship between response selection and response inhibition: an individual differences approach. Atten. Percept. Psychophys. 78, 2420–2432 (2016).

    PubMed  Google Scholar 

  62. Unsworth, N., Heitz, R., Schrock, J. & Engle, R. An automated version of the operation span task. Behav. Res. Methods 37, 498–505 (2005).

    PubMed  Google Scholar 

  63. Rush, B. K., Barch, D. M. & Braver, T. S. Accounting for cognitive aging: context processing, inhibition or processing speed? Aging Neuropsychol. Cogn. 13, 588–610 (2006).

    Google Scholar 

  64. Madden, D. J. Aging and visual attention. Curr. Dir. Psychol. Sci. 16, 70–74 (2007).

    PubMed  PubMed Central  Google Scholar 

  65. Heaton, R. K., PAR Staff. Wisconsin card sorting test: Computer version 4-research edition (WCST: CV4) (PAR, 2003).

  66. Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y. & Plumb, I. The “Reading the Mind in the Eyes” test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism. J. Child Psychol. Psychiatry 42, 241 (2001).

    CAS  PubMed  Google Scholar 

  67. Gunning-Dixon, F. M. & Raz, N. Neuroanatomical correlates of selected executive functions in middle-aged and older adults: a prospective MRI study. Neuropsychologia 41, 1929–1941 (2003).

    PubMed  Google Scholar 

  68. Luck, T. et al. Prevalence of DSM-5 mild neurocognitive disorder in dementia-free older adults: results of the population-based LIFE-Adult-Study. Am. J. Geriatr. Psychiatry 25, 328–339 (2017).

    PubMed  Google Scholar 

  69. Boggio, P. S. et al. Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease. J. Neurol. Neurosurg. Psychiatry 80, 444–447 (2009).

    CAS  PubMed  Google Scholar 

  70. Rami, L. et al. Effects of repetitive transcranial magnetic stimulation on memory subtypes: a controlled study. Neuropsychologia 41, 1877–1883 (2003).

    CAS  PubMed  Google Scholar 

  71. Floel, A. et al. Prefrontal cortex asymmetry for memory encoding of words and abstract shapes. Cereb. Cortex 14, 404–409 (2004).

    PubMed  Google Scholar 

  72. Rossi, S. et al. Prefontal cortex in long-term memory: an “interference” approach using magnetic stimulation. Nat. Neurosci. 4, 948–952 (2001).

    CAS  PubMed  Google Scholar 

  73. Sandrini, M., Cappa, S. F., Rossi, S., Rossini, P. M. & Miniussi, C. The role of prefrontal cortex in verbal episodic memory: rTMS evidence. J. Cogn. Neurosci. 15, 855–861 (2003).

    PubMed  Google Scholar 

  74. Epstein, C. M., Sekino, M., Yamaguchi, K., Kamiya, S. & Ueno, S. Asymmetries of prefrontal cortex in human episodic memory: effects of transcranial magnetic stimulation on learning abstract patterns. Neurosci. Lett. 320, 5–8 (2002).

    CAS  PubMed  Google Scholar 

  75. Brady, T. F., Konkle, T., Alvarez, G. A. & Oliva, A. Visual long-term memory has a massive storage capacity for object details. Proc. Natl Acad. Sci. USA 105, 14325–14329 (2008).

    CAS  PubMed  Google Scholar 

  76. Anguera, J. A. et al. Video game training enhances cognitive control in older adults. Nature 501, 97–101 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hinton-Bayre, A. & Geffen, G. Comparability, reliability, and practice effects on alternate forms of the digit symbol substitution and symbol digit modalities tests. Psychol. Assess. 17, 237 (2005).

    PubMed  Google Scholar 

  78. Roth, R. M., Isquith, P. K. and Gioia, G. A. Behavior Rating Inventory of Executive Function-Adult Version: Professional Manual (Psychological Assessment Resources, 2005).

  79. Holbrook, M. & Skilbeck, C. E. An activities index for use with stroke patients. Age Ageing 12, 166–170 (1983).

    CAS  PubMed  Google Scholar 

  80. Turnbull, J. C. et al. Validation of the Frenchay Activities Index in a general population aged 16 years and older. Arch. Phys. Med. Rehabil. 81, 1034–1038 (2000).

    CAS  PubMed  Google Scholar 

  81. Hawi, Z., Millar, N., Daly, G., Fitzgerald, M. & Gill, M. No association between catechol-O-methyltransferase (COMT) gene polymorphism and attention deficit hyperactivity disorder (ADHD) in an Irish sample. Am. J. Med. Genet. 96, 282–284 (2000).

    CAS  PubMed  Google Scholar 

  82. Klem, G. H., Lüders, H. O., Jasper, H. & Elger, C. The ten-twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol. 52, 3–6 (1999).

    CAS  Google Scholar 

  83. Dux, P. E., Ivanoff, J., Asplund, C. L. & Marois, R. Isolation of a central bottleneck of information processing with time-resolved fMRI. Neuron 52, 1109–1120 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dux, P. E. et al. Training improves multitasking performance by increasing the speed of information processing in human prefrontal cortex. Neuron 63, 127–138 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Filmer, H. L., Mattingley, J. B. & Dux, P. E. Improved multitasking following prefrontal tDCS. Cortex 49, 2845–2852 (2013).

    PubMed  Google Scholar 

  86. Park, S.-H., Seo, J.-H., Kim, Y.-H. & Ko, M.-H. Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults. NeuroReport 25, 122–126 (2014).

    PubMed  Google Scholar 

  87. Fregni, F. et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp. Brain Res. 166, 23–30 (2005).

    PubMed  Google Scholar 

  88. Boggio, P. S., Zaghi, S., Lopes, M. & Fregni, F. Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers. Eur. J. Neurol. 15, 1124–1130 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our research assistant A. Fox, who contributed substantially to data collection. P.E.D. and J.B.M. were supported by an ARC grant (DP180101885), H.L.F. by a UQ Fellowship (UQFEL1607881) and ARC Discovery Early Career Researcher Award (DE190100299). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

K.S.H. was involved in all aspects of the study, including study design, project planning, recruitment and data collection, data analysis and manuscript preparation. H.L.F. also contributed to each of these aspects. Z.E.N. contributed to project planning and data collection. Z.H. and K.P. were responsible for extraction and analysis of genetic data. J.B.M. contributed to study design and manuscript preparation. P.E.D. was involved in study design, project planning, data analysis and manuscript preparation.

Corresponding author

Correspondence to Kristina S. Horne.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary handling editor: Anne Marike-Schiffer.

Extended data

Extended Data Fig. 1 Individual task and questionnaire statistics for one way ANOVA on baseline performance.

Note: BF >10 indicates strong support for H1 over H0; BF >3 indicates moderate support for H1 over H0; 1< BF <3 indicates anecdotal support for H1 over H0; 1/3< BF <1 indicates anecdotal support for H0 over H1; 1/10< BF <1/3 indicates moderate support for H0 over H1; BF <1/10 indicates strong evidence for H0 over H1; BF = 1 indicates no evidence for H0 or H1.

Extended Data Fig. 2 Individual task and questionnaire statistics for the group x time interaction for all time points.

Note: BF >10 indicates strong support for H1 over H0; BF >3 indicates moderate support for H1 over H0; 1< BF <3 indicates anecdotal support for H1 over H0; 1/3< BF <1 indicates anecdotal support for H0 over H1; 1/10< BF <1/3 indicates moderate support for H0 over H1; BF <1/10 indicates strong evidence for H0 over H1; BF = 1 indicates no evidence for H0 or H1.

Extended Data Fig. 3 Individual task statistics for the effect of genotype on baseline performance.

Note: COMT statistics are derived from one-way ANOVAs and BDNF statistics are derived from independent samples t-tests due to the exclusion of Met/Met alleles from analyses. BF >10 indicates strong support for H1 over H0; BF >3 indicates moderate support for H1 over H0; 1< BF <3 indicates anecdotal support for H1 over H0; 1/3< BF <1 indicates anecdotal support for H0 over H1; 1/10< BF <1/3 indicates moderate support for H0 over H1; BF <1/10 indicates strong evidence for H0 over H1; BF = 1 indicates no evidence for H0 or H1.

Extended Data Fig. 4 Individual task statistics for the genotype x group x time interaction.

Note: COMT statistics are derived from one-way ANOVAs and BDNF statistics are derived from independent samples t-tests due to the exclusion of Met/Met alleles from analyses. BF >10 indicates strong support for H1 over H0; BF >3 indicates moderate support for H1 over H0; 1< BF <3 indicates anecdotal support for H1 over H0; 1/3< BF <1 indicates anecdotal support for H0 over H1; 1/10< BF <1/3 indicates moderate support for H0 over H1; BF <1/10 indicates strong evidence for H0 over H1; BF = 1 indicates no evidence for H0 or H1.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figs. 1–16 and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horne, K.S., Filmer, H.L., Nott, Z.E. et al. Evidence against benefits from cognitive training and transcranial direct current stimulation in healthy older adults. Nat Hum Behav 5, 146–158 (2021). https://doi.org/10.1038/s41562-020-00979-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-020-00979-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing