Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genome-wide association study identifies 48 common genetic variants associated with handedness

Abstract

Handedness has been extensively studied because of its relationship with language and the over-representation of left-handers in some neurodevelopmental disorders. Using data from the UK Biobank, 23andMe and the International Handedness Consortium, we conducted a genome-wide association meta-analysis of handedness (N = 1,766,671). We found 41 loci associated (P < 5 × 10−8) with left-handedness and 7 associated with ambidexterity. Tissue-enrichment analysis implicated the CNS in the aetiology of handedness. Pathways including regulation of microtubules and brain morphology were also highlighted. We found suggestive positive genetic correlations between left-handedness and neuropsychiatric traits, including schizophrenia and bipolar disorder. Furthermore, the genetic correlation between left-handedness and ambidexterity is low (rG = 0.26), which implies that these traits are largely influenced by different genetic mechanisms. Our findings suggest that handedness is highly polygenic and that the genetic variants that predispose to left-handedness may underlie part of the association with some psychiatric disorders.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Manhattan plot of the left-handedness meta-analysis.
Fig. 2: Manhattan plot of the ambidexterity meta-analysis.

Data availability

GWAS summary statistics of the meta-analysis of the UKBB, IHC and 23andMe data for the top 10,000 independent SNPs as well as summary statistics of the meta-analysis between the UKBB and IHC data for all the SNPs are available at https://evansgroup.di.uq.edu.au/gwas-results.html. Access to the full summary statistics from the 23andMe sample (for all SNPs) can be obtained by qualified researchers through a data transfer agreement with 23andMe that protects participant privacy. Please contact 23andMe at https://research.23andme.com/dataset-access for more information.

Code availability

The code used to perform the meta-analysis will become available on GitHub upon publication.

References

  1. Hepper, P. G., McCartney, G. R. & Shannon, E. A. Lateralised behaviour in first trimester human foetuses. Neuropsychologia 36, 521–534 (1998).

    Article  Google Scholar 

  2. Parma, V., Brasselet, R., Zoia, S., Bulgheroni, M. & Castiello, U. The origin of human handedness and its role in pre-birth motor control. Sci. Rep. 7, 16804 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Lazenby, R. Skeletal biology, functional asymmetry and the origins of ‘handedness’. J. Theor. Biol. 218, 129–138 (2002).

    Article  PubMed  Google Scholar 

  4. Gumustekin, K. et al. Handedness and bilateral femoral bone densities in men and women. Int. J. Neurosci. 114, 1533–1547 (2004).

    Article  PubMed  Google Scholar 

  5. Steele, J. & Mays, S. Handedness and directional asymmetry in the long bones of the human upper limb. Int. J. Osteoarchaeologoy 5, 39–49 (1995).

    Article  Google Scholar 

  6. Knecht, S. et al. Handedness and hemispheric language dominance in healthy humans. Brain 123, 2512–2518 (2000).

    Article  PubMed  Google Scholar 

  7. Pujol, J., Deus, J., Losilla, J. M. & Capdevila, A. Cerebral lateralization of language in normal left-handed people studied by functional MRI. Neurology 52, 1038–1043 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Papadatou-Pastou, M. et al. Human handedness: a meta-analysis. Psychol. Bull. 146, 481–524 (2020).

    Article  PubMed  Google Scholar 

  9. Papadatou-Pastou, M., Martin, M., Munafo, M. R. & Jones, G. V. Sex differences in left-handedness: a meta-analysis of 144 studies. Psychol. Bull. 134, 677–699 (2008).

    Article  PubMed  Google Scholar 

  10. Annett, M. Left, Right, Hand and Brain: the Right Shift Theory (Lawrence Erlbaum Associates, 1985).

  11. McManus, I. C. Handedness, language dominance and aphasia: a genetic model. Psychol. Med. Monogr. Suppl. 8, 1–40 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Medland, S. E., Duffy, D. L., Wright, M. J., Geffen, G. M. & Martin, N. G. Handedness in twins: joint analysis of data from 35 samples. Twin Res Hum. Genet. 9, 46–53 (2006).

    Article  PubMed  Google Scholar 

  13. Francks, C. et al. A genomewide linkage screen for relative hand skill in sibling pairs. Am. J. Hum. Genet. 70, 800–805 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Van Agtmael, T., Forrest, S. M., Del-Favero, J., Van Broeckhoven, C. & Williamson, R. Parametric and nonparametric genome scan analyses for human handedness. Eur. J. Hum. Genet. 11, 779–783 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. Warren, D. M., Stern, M., Duggirala, R., Dyer, T. D. & Almasy, L. Heritability and linkage analysis of hand, foot, and eye preference in Mexican Americans. Laterality 11, 508–524 (2006).

    Article  PubMed  Google Scholar 

  16. Somers, M. et al. Linkage analysis in a Dutch population isolate shows no major gene for left-handedness or atypical language lateralization. J. Neurosci. 35, 8730–8736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Medland, S. E. et al. Opposite effects of androgen receptor CAG repeat length on increased risk of left-handedness in males and females. Behav. Genet. 35, 735–744 (2005).

    Article  PubMed  Google Scholar 

  18. Francks, C. et al. LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Mol. Psychiatry 12, 1129–1139 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scerri, T. S. et al. PCSK6 is associated with handedness in individuals with dyslexia. Hum. Mol. Genet. 20, 608–614 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. de Kovel, C. G. F. & Francks, C. The molecular genetics of hand preference revisited. Sci. Rep. 9, 5986 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wiberg, A. et al. Handedness, language areas and neuropsychiatric diseases: insights from brain imaging and genetics. Brain 142, 2938–2947 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de Jong, S. et al. Common inversion polymorphism at 17q21.31 affects expression of multiple genes in tissue-specific manner. BMC Genomics 13, 458 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Barbeira, A. N. et al. Integrating predicted transcriptome from multiple tissues improves association detection. PLoS Genet. 15, e1007889 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. UniProt Consortium.The universal protein resource (UniProt). Nucleic Acids Res. 36, D190–D195 (2008).

    Article  CAS  Google Scholar 

  29. Wang, D. et al. Comprehensive functional genomic resource and integrative model for the human brain. Science 362, eaat8464 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362, eaat8127 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qi, T. et al. Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood. Nat. Commun. 9, 2282 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. GTEx Consortium. The Genotype–Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article  CAS  Google Scholar 

  33. Fromer, M. et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci. 19, 1442–1453 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ng, B. et al. An xQTL map integrates the genetic architecture of the human brain’s transcriptome and epigenome. Nat. Neurosci. 20, 1418–1426 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun, T. et al. Early asymmetry of gene transcription in embryonic human left and right cerebral cortex. Science 308, 1794–1798 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ocklenburg, S. et al. Epigenetic regulation of lateralized fetal spinal gene expression underlies hemispheric asymmetries. eLife 6, e22784 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Visscher, P. M. et al. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet. 2, e41 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Cuellar-Partida, G. et al. Complex-Traits Genetics Virtual Lab: a community-driven web platform for post-GWAS analyses. Preprint at bioRxiv https://doi.org/10.1101/518027 (2019).

  39. Vuoksimaa, E., Koskenvuo, M., Rose, R. J. & Kaprio, J. Origins of handedness: a nationwide study of 30,161 adults. Neuropsychologia 47, 1294–1301 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kapitein, L. C. & Hoogenraad, C. C. Building the neuronal microtubule cytoskeleton. Neuron 87, 492–506 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Lasser, M., Tiber, J. & Lowery, L. A. The role of the microtubule cytoskeleton in neurodevelopmental disorders. Front. Cell. Neurosci. 12, 165 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Hirnstein, M. & Hugdahl, K. Excess of non-right-handedness in schizophrenia: meta-analysis of gender effects and potential biases in handedness assessment. Br. J. Psychiatry 205, 260–267 (2014).

    Article  PubMed  Google Scholar 

  43. Preslar, J., Kushner, H. I., Marino, L. & Pearce, B. Autism, lateralisation, and handedness: a review of the literature and meta-analysis. Laterality 19, 64–95 (2014).

    Article  PubMed  Google Scholar 

  44. Penazzi, L., Bakota, L. & Brandt, R. Microtubule dynamics in neuronal development, plasticity, and neurodegeneration. Int. Rev. Cell Mol. Biol. 321, 89–169 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Chang, Q., Yang, H., Wang, M., Wei, H. & Hu, F. Role of microtubule-associated protein in autism spectrum disorder. Neurosci. Bull. 34, 1119–1126 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marchisella, F., Coffey, E. T. & Hollos, P. Microtubule and microtubule associated protein anomalies in psychiatric disease. Cytoskeleton 73, 596–611 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Ahn, K. et al. High rate of disease-related copy number variations in childhood onset schizophrenia. Mol. Psychiatry 19, 568–572 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Cantor, R. M. et al. Replication of autism linkage: fine-mapping peak at 17q21. Am. J. Hum. Genet. 76, 1050–1056 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yonan, A. L. et al. A genomewide screen of 345 families for autism-susceptibility loci. Am. J. Hum. Genet. 73, 886–897 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Trampush, J. W. et al. GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT consortium. Mol. Psychiatry 22, 1651–1652 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hill, W. D. et al. A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence. Mol. Psychiatry 24, 169–181 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Simon-Sanchez, J. et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat. Genet. 41, 1308–1312 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dragovic, M. & Hammond, G. Handedness in schizophrenia: a quantitative review of evidence. Acta Psychiatr. Scand. 111, 410–419 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Ravichandran, C., Shinn, A. K., Ongur, D., Perlis, R. H. & Cohen, B. Frequency of non-right-handedness in bipolar disorder and schizophrenia. Psychiatry Res. 253, 267–269 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G. R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 44, 955–959 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Durand, E. Y., Chuong. B. D., Mountain, J. L. & Macpherson, J. M. Ancestry composition: a novel, efficient pipeline for ancestry deconvolution. Preprint at bioRxiv https://doi.org/10.1101/010512 (2014).

  58. Henn, B. M. et al. Cryptic distant relatives are common in both isolated and cosmopolitan genetic samples. PLoS ONE 7, e34267 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 1000 Genomes Project Consortiumet al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  CAS  Google Scholar 

  60. UK10K Consortium et al. The UK10K project identifies rare variants in health and disease. Nature 526, 82–90 (2015).

    Article  CAS  Google Scholar 

  61. Perelle, I. B. & Ehrman, L. An international study of human handedness: the data. Behav. Genet. 24, 217–227 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Winkler, T. W. et al. Quality control and conduct of genome-wide association meta-analyses. Nat. Protoc. 9, 1192–1212 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Loh, P. R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee, S. H., Wray, N. R., Goddard, M. E. & Visscher, P. M. Estimating missing heritability for disease from genome-wide association studies. Am. J. Hum. Genet. 88, 294–305 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Neale, M. C. et al. OpenMx 2.0: extended structural equation and statistical modeling. Psychometrika 81, 535–549 (2016).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Professor John M. Starr and Professor Leena Peltonen have passed away. We have included them in memory of their work on this project. This research was conducted using the UK Biobank Resource (application number 12703). Access to the UK Biobank study data was funded by the University of Queensland (Early Career Researcher grant 2014002959 to N.W.). D.M.E. is funded by a National Health and Medical Research Council Senior Research Fellowship (APP1137714). G.C.-P. is funded by an Australia Research Council Discovery Early Career Researcher Award (DE180100976). C.M.L. is supported by the Li Ka Shing Foundation, WT-SSI/John Fell funds and by the NIHR Biomedical Research Centre, Oxford, by Widenlife and NIH (5P50HD028138-27). R.M. was supported by Estonian Research Council grant PUT PRG687 and institutional grant PP1GI19935 from Institute of Genomics, University of Tartu. M.I.M. funding support for this work comes from Wellcome (090532, 106130, 098381, 203141, 212259, 095101, 200837 and 099673/Z/12/Z) and the NIHR (NF-SI-0617-10090). N.W. is supported by an Australian National Health and Medical Research Council Early Career Fellowship (APP1104818). S.E.M. was funded by a NHMRC Senior Research Fellowship (APP1103623). I.B. is funded by Wellcome (WT206194). B.F. was supported by a grant from the Oak Foundation. We thank the research participants of 23andMe for making this study possible. Members of the 23andMe Research Team are as follows: M. Agee, A. Auton, R. K. Bell, K. Bryc, S. L. Elson, P. Fontanillas, N. A. Furlotte, B. Hicks, K. E. Huber, E. M. Jewett, Y. Jiang, A. Kleinman, K.-H. Lin, N. K. Litterman, M. H. McIntyre, K. F. McManus, J. L. Mountain, E. S. Noblin, C. A. M. Northover, S. J. Pitts, G. D. Poznik, J. F. Sathirapongsasuti, J. F. Shelton, S. Shringarpure, C. Tian, V. Vacic, X. Wang and C. H. Wilson. We are extremely grateful to all the families who took part in the ALSPAC study, the midwives for their help in recruiting them and the entire ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses. The UK Medical Research Council and Wellcome Trust (grant reference 102215/2/13/2) and the University of Bristol provide core support for ALSPAC. GWAS data were generated by Sample Logistics and Genotyping Facilities at the Wellcome Sanger Institute and LabCorp (Laboratory Corporation of America) using support from 23andMe. The Netherlands Twin Register acknowledges funding from the Netherlands Organization for Scientific research (NWO), including NWO-Grant 480-15-001/674: Netherlands Twin Registry Repository and the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI–NL, 184.021.007 and 184.033.111); the KNAW Academy Professor Award (PAH/6635 to D.I.B.); Amsterdam Public Health (APH) and Neuroscience Campus Amsterdam (NCA); the European Community 7th Framework Program (FP7/2007-2013): ENGAGE (HEALTH-F4-2007-201413) and ACTION (9602768). We also acknowledge The Rutgers University Cell and DNA Repository cooperative agreement (NIMH U24 MH068457-06); the Collaborative Study of the Genetics of DZ twinning (NIH R01D0042157-01A1); the Developmental Study of Attention Problems in Young Twins (NIMH, RO1 MH58799-03); Major depression: stage 1 genome-wide association in population-based samples (MH081802); Determinants of Adolescent Exercise Behavior (NIDDK R01 DK092127-04); Grand Opportunity grants Integration of Genomics and Transcriptomics (NIMH 1RC2MH089951-01) and Developmental Trajectories of Psychopathology (NIMH 1RC2 MH089995); and the Avera Institute for Human Genetics, Sioux Falls, South Dakota (USA). The generation and management of GWAS genotype data for the Rotterdam Study (RS I, RS II, RS III) were executed by the Human Genotyping Facility of the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands. The GWAS datasets are supported by the Netherlands Organisation of Scientific Research NWO Investments (number 175.010.2005.011, 911-03-012), the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), and the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) Netherlands Consortium for Healthy Aging (NCHA), project number 050-060-810. We thank P. Arp, M. Jhamai, M. Verkerk, L. Herrera and M. Peters and C. Medina-Gomez for their help in creating the GWAS database, and K. Estrada, Y. Aulchenko and C. Medina-Gomez. for the creation and analyses of imputed data. We would like to thank K. Estrada, F. Rivadeneira, T. A. Knoch, M. Verkerk and A. Abuseiris. The Rotterdam Study is funded by the Erasmus Medical Center and Erasmus University, Rotterdam, the Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The authors are very grateful to the study participants, the staff from the Rotterdam Study (particularly L. Buist and J. H. van den Boogert) and the participating general practitioners and pharmacists. We thank all study participants as well as everybody involved in the Helsinki Birth Cohort Study (HBCS). The Helsinki Birth Cohort Study has been supported by grants from the Academy of Finland, the Finnish Diabetes Research Society, the Folkhälsan Research Foundation, the Novo Nordisk Foundation, Finska Läkaresällskapet, the Juho Vainio Foundation, the Signe and Ane Gyllenberg Foundation, the University of Helsinki, the Ministry of Education, the Ahokas Foundation, and the Emil Aaltonen Foundation. In addition, we thank the participants and staff of the Nurses’ Health Study and the Health Professionals Follow-up Study for their valuable contributions, and the Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School This work was supported in part by NIH R01 CA49449, P01 CA87969, UM1 CA186107 and UM1 CA167552. The KORA study was initiated and financed by the Helmholtz Zentrum München—German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. Furthermore, KORA research was supported within the Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universität, as part of LMUinnovativ. We are very grateful to all DNBC families who took part in the study. We would also like to thank everyone involved in data collection and biological material handling. The DNBC was established based on a major grant from Danish National Research Foundation. Additional support for the DNBC was obtained from the Pharmacy Foundation, the Egmont Foundation, the March of Dimes Birth Defects Foundation, the Augustinus Foundation, and the Health Foundation. The DNBC 7-year follow-up was supported by the Lundbeck Foundation (195/04) and the Danish Medical Research Council (SSVF 0646). The DNBC biobank is a part of the Danish National Biobank resource, which is supported by the Novo Nordisk Foundation. Phenotype and genotype data collection in the Finnish Twin Cohort has been supported by the Wellcome Trust Sanger Institute, the Broad Institute, ENGAGE – European Network for Genetic and Genomic Epidemiology, FP7-HEALTH-F4-2007, grant agreement number 201413, National Institute of Alcohol Abuse and Alcoholism (grants AA-12502, AA-00145, and AA-09203 to R J Rose and AA15416 and K02AA018755 to D M Dick) and the Academy of Finland (grants 100499, 205585, 118555, 141054, 264146, 308248, and 312073 to J.K.). J.K. acknowledges support by the Academy of Finland (grants 265240, 263278). E.V. acknowledges support by the Academy of Finland (grant 314639). Finally, we thank the participants of all the cohorts for their valuable contribution. This publication is the work of the authors, and S.E.M. and D.M.E. will serve as guarantors for the contents of this paper. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Study design: C.M.L., R.M., B.M.N., D.M.E., S.E.M. Manuscript preparation: G.C.-P., C.M.L., R.M., B.M.N., D.M.E., S.E.M. Meta-analysis and downstream analyses: G.C.-P. Individual study design, analysis or data collection: N.E., D.A.H., J.Y.T. (23andMe); P.D., W.L.M., L. Paternoster, G.D.S., B.S.P., N.J.T. (ALSPAC); D.M.E., J.P.K. (ALSPAC, UKBB); F.A., D.M.D. (COGA); J.S.B., Z.K., P.M.-V., V.M., P.V., G. Waeber, D.W. (COLAUS); C.H., J.E.H., O.P. (CROATIA-Korcula); H.C., I.R., A.F.W. (CROATIA-Vis); O.A.A., M.P.B., I.G., T.F.H., A.M.H., B.K., S.H.M., R.A.O., D.R., K.S., H.S, S.S., G.T., T.W. (deCODE); H.A.B., B.F., F.G., M. Melbye (DNBC); T.E., R.M., A.M., L.M., M.N., M.T.-L. (EGCUT); M.M.B.B. (EMC); I.B., K.-T.K., R.J.F.L., N.J.W., J.H.Z. (EPIC); J.N.H., C.P. (FRAMINGHAM); K.H., J.K., T.P., E.V. (FTC); J.G.E., J.L., K.R., E.W. (HBCS); E.A., C.G., N.K., H.-E.W. (KORA); G.D., I.J.D., M.L., J.M.S. (LBC); A.A.H., S.A.M., P.P.P. (MICROS); B.W.J.H.P., J.H.S. (NESDA); C.M.L., M.I.M., A.P., L. Peltonen, I.P., S.R. (NFBC66); J.H., P.K., X.L., M.X. (NHS/HPFS); D.I.B., E.J.C.d.G., J.-J.H., J.M.V., G. Willemsen (NTR); D.L.D., S.D.G., N.G.M., S.E.M., D.R.N., M.J.W. (QIMR); M.A.I., C.M.-G., F.R., A.G.U., C.M.v.D., F.J.A.v.R. (RS); J.W.S. (STEP); K.S.O. (TOP); G.C.-P., L.-D.H., N.W. (UKBB); L.F.C., M. Mangino, N.S., T.D.S. (UK TWIN); D.I.C., G.P., W.L.M., B.M.N. Manuscript review: all the authors reviewed the manuscript.

Corresponding authors

Correspondence to David M. Evans or Sarah E. Medland.

Ethics declarations

Competing interests

G.C.-P., N.E., D.A.H. and J.Y.T. are employees of 23andMe, Inc., and hold stock or stock options in 23andMe. S.H.M., K.S., H.S., S.S. and G.T. are employees of deCODE Genetics/Amgen. M.I.M. is a Wellcome Senior Investigator and a NIHR Senior Investigator. The views expressed in this article are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. M.I.M. has served on advisory panels for Pfizer, NovoNordisk and Zoe Global; has received honoraria from Merck, Pfizer, NovoNordisk and Eli Lilly; has stock options in Zoe Global; has received research funding from Abbvie, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, NovoNordisk, Pfizer, Roche, Sanofi Aventis, Servier and Takeda. As of June 2019, he is an employee of Genentech, and holder of Roche stock. All other authors report no conflicts of interest.

Additional information

Peer review information Primary handling editor: Charlotte Payne.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Reporting Summary

Supplementary Tables

Supplementary Tables 1–21.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cuellar-Partida, G., Tung, J.Y., Eriksson, N. et al. Genome-wide association study identifies 48 common genetic variants associated with handedness. Nat Hum Behav 5, 59–70 (2021). https://doi.org/10.1038/s41562-020-00956-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-020-00956-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing