Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Knowledge gaps in the early growth of semantic feature networks

Abstract

Understanding language learning and more general knowledge acquisition requires the characterization of inherently qualitative structures. Recent work has applied network science to this task by creating semantic feature networks, in which words correspond to nodes and connections correspond to shared features, and then by characterizing the structure of strongly interrelated groups of words. However, the importance of sparse portions of the semantic network—knowledge gaps—remains unexplored. Using applied topology, we query the prevalence of knowledge gaps, which we propose manifest as cavities in the growing semantic feature network of toddlers. We detect topological cavities of multiple dimensions and find that, despite word order variation, the global organization remains similar. We also show that nodal network measures correlate with filling cavities better than basic lexical properties. Finally, we discuss the importance of semantic feature network topology in language learning and speculate that the progression through knowledge gaps may be a robust feature of knowledge acquisition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Knowledge gaps manifesting as topological cavities in the growing semantic feature network.
Fig. 2: Persistent homology detects longevity of topological cavities in n-order complexes.
Fig. 3: Persistent homology distinguishes random from structured generative models of n-order complexes.
Fig. 4: Topological cavities form and die in the semantic feature network with a pattern that is resistant to random node reordering.
Fig. 5: Global semantic feature network architecture is consistent across maternal education levels despite local variations.
Fig. 6: Number of persistent cycles killed correlates with topological properties instead of lexical features.

Similar content being viewed by others

References

  1. Duff, F. J. & Hulme, C. The role of children’s phonological and semantic knowledge in learning to read words. Sci. Stud. Read. 16, 504–525 (2012).

    Google Scholar 

  2. Ambridge, B., Kidd, E., Rowland, C. F. & Theakston, A. L. The ubiquity of frequency effects in first language acquisition. J. Child Lang. 42, 239–273 (2015).

    PubMed  PubMed Central  Google Scholar 

  3. Karuza, E. A., Thompson-Schill, S. L. & Bassett, D. S. Local patterns to global architectures: influences of network topology on human learning. Trends Cogn. Sci. 20, 629–640 (2016).

    PubMed  PubMed Central  Google Scholar 

  4. Hills, T. T., Maouene, M., Maouene, J., Sheya, A. & Smith, L. Longitudinal analysis of early semantic networks—preferential attachment or preferential acquisition? Psychol. Sci. 20, 729–739 (2009).

    PubMed  Google Scholar 

  5. Goldstein, R. & Vitevitch, M. S. The influence of clustering coefficient on word-learning: how groups of similar sounding words facilitate acquisition. Front. Psychol. 5, 1307 (2014).

  6. Steyvers, M. & Tenenbaum, J. B. The large-scale structure of semantic networks: statistical analyses and a model of semantic growth. Cogn. Sci. 29, 41–78 (2005).

    PubMed  Google Scholar 

  7. Hills, T. T., Maouene, J., Riordan, B. & Smith, L. B. The associative structure of language: contextual diversity in early word learning. J. Mem. Lang. 63, 259–273 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hills, T. The company that words keep: comparing the statistical structure of child- versus adult-directed language. J. Child Lang. 40, 586–604 (2013).

    PubMed  Google Scholar 

  9. Stella, M., Beckage, N. M., Brede, M. & De Domenico, M. Multiplex model of mental lexicon reveals explosive learning in humans. Sci. Rep. 8, 2259 (2018).

    PubMed  PubMed Central  Google Scholar 

  10. Giusti, C., Pastalkova, E., Curto, C. & Itskov, V. Clique topology reveals intrinsic geometric structure in neural correlations. Proc. Natl Acad. Sci. USA 112, 13455–13460 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Petri, G., Scolamiero, M., Donato, I. & Vaccarino, F. Topological strata of weighted complex networks. PLoS ONE 8, e66506 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Petri, G., Scolamiero, M., Donato, I. & Vaccarino, F. Networks and cycles: a persistent homology approach to complex networks. In Proc. European Conference on Complex Systems 2012 93–99 (Springer, 2013).

  13. Carlsson, G. Topology and data. Bull. Amer. Math. Soc. 46, 255–308 (2009).

    Google Scholar 

  14. Zomorodian, A. & Carlsson, G. Computing persistent homology. Discrete Comput. Geom. 33, 249–274 (2005).

    Google Scholar 

  15. Frank, M. C., Braginsky, M., Yurovsky, D. & Marchman, V. A. Wordbank: an open repository for developmental vocabulary data. J. Child Lang. 44, 677–694 (2017).

  16. McRae, K., Cree, G. S., Seidenberg, M. S. & McNorgan, C. Semantic feature production norms for a large set of living and nonliving things. Behav. Res. Methods 37, 547–559 (2005).

    PubMed  Google Scholar 

  17. Engelthaler, T. & Hills, T. T. Feature biases in early word learning: network distinctiveness predicts age of acquisition. Cogn. Sci. 41, 120–140 (2017).

    PubMed  Google Scholar 

  18. Bilson, S., Yoshida, H., Tran, C. D., Woods, E. A. & Hills, T. T. Semantic facilitation in bilingual first language acquisition. Cognition 140, 122–134 (2015).

    PubMed  Google Scholar 

  19. Bender, E. A. & Canfield, E. R. The asymptotic number of labeled graphs with given degree sequences. J. Comb. Theory A 24, 296–307 (1978).

    Google Scholar 

  20. Maslov, S. & Sneppen, K. Specificity and stability in topology of protein networks. Science 296, 910–913 (2002).

    CAS  PubMed  Google Scholar 

  21. Hoff, E. & Tian, C. Socioeconomic status and cultural influences on language. J. Commun. Disord. 38, 271–278 (2005).

    PubMed  Google Scholar 

  22. Schwab, J. F. & Lew-Williams, C. Language learning, socioeconomic status, and child-directed speech. Wiley Interdiscip. Rev. Cogn. Sci. 7, 264–275 (2016).

    PubMed  PubMed Central  Google Scholar 

  23. Beckage, N., Smith, L. & Hills, T. Small worlds and semantic network growth in typical and late talkers. PLoS ONE 6, e19348 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jimenez, E. & Hills, T. Network analysis of a large sample of typical and late talkers. In Proc. 39th Annual Meeting Cognitive Science Society 2302–2307 (Cognitive Science Society, 2017).

  25. Dollaghan, C. A. et al. Maternal education and measures of early speech and language. J. Speech Lang. Hear. Res. 42, 1432–1443 (1999).

    CAS  PubMed  Google Scholar 

  26. Nagy, W. E., Anderson, R. C. & Herman, P. A. Learning word meanings from context during normal reading. Amer. Educ. Res. J. 24, 237–270 (1987).

    Google Scholar 

  27. Goodman, J. C., Dale, P. S. & Li, P. Does frequency count? Parental input and the acquisition of vocabulary. J. Child Lang. 35, 515–531 (2008).

    PubMed  Google Scholar 

  28. Arbesman, S., Strogatz, S. H. & Vitevitch, M. S. The structure of phonological networks across multiple languages. Int. J. Bifurcat. Chaos 20, 679–685 (2010).

    Google Scholar 

  29. Siew, C. S. Q. Community structure in the phonological network. Front. Psychol. 4, 553 (2013).

  30. Corominas-Murtra, B., Valverde, S. & Sole, R. The ontogeny of scale-free syntax networks: phase transitions in early language acquisition. Adv. Complex Syst. 12, 371–392 (2009).

    Google Scholar 

  31. Čech, R. & Mačutek, J. Word form and lemma syntactic dependency networks in Czech: a comparative study. Glottometrics 19, 85–98 (2009).

    Google Scholar 

  32. Brent, M. R. & Siskind, J. M. The role of exposure to isolated words in early vocabulary development. Cognition 81, B33–B44 (2001).

    CAS  PubMed  Google Scholar 

  33. Huttenlocher, J., Haight, W., Bryk, A., Seltzer, M. & Lyons, T. Early vocabulary growth: relation to language input and gender. Dev. Psychol. 27, 236–248 (1991).

    Google Scholar 

  34. Hart, B. & Risley, T. R. Meaningful Differences in the Everyday Experience of Young American Children (Brookes, Baltimore, MD, 1995).

  35. Storkel, H. L. Developmental differences in the effects of phonological, lexical and semantic variables on word learning by infants. J. Child Lang. 36, 291–321 (2009).

    PubMed  Google Scholar 

  36. Storkel, H. L. Learning new words: phonotactic probability in language development. J. Speech Lang. Hear. Res. 44, 1321–1337 (2001).

    CAS  PubMed  Google Scholar 

  37. Hirsh-Pasek, K. et al. The contribution of early communication quality to low-income children’s language success. Psychol. Sci. 26, 1071–1083 (2015).

    PubMed  Google Scholar 

  38. Youn, H. et al. On the universal structure of human lexical semantics. Proc. Natl Acad. Sci. USA 113, 1766–1771 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Goddard, C. (ed.) Cross-Linguistic Semantics, Vol. 102 (John Benjamins, Amsterdam, 2008).

  40. Solé, R. V. & Seoane, L. F. Ambiguity in language networks. Linguist. Rev. 32, 5–35 (2015).

    Google Scholar 

  41. Hills, T. T., Maouene, M., Maouene, J., Sheya, A. & Smith, L. Categorical structure among shared features in networks of early-learned nouns. Cognition 112, 381–396 (2009).

    PubMed  PubMed Central  Google Scholar 

  42. Cancho, R. F. & Solé, R. V. The small world of human language. Proc. R. Soc. Lond. B 268, 2261–2265 (2001).

    Google Scholar 

  43. Taylor, D. et al. Topological data analysis of contagion maps for examining spreading processes on networks. Nature Commun. 6, 7723 (2015).

    CAS  Google Scholar 

  44. Papadopoulos, L. et al. Embedding of biological distribution networks with differing environmental constraints. Preprint at https://arxiv.org/abs/1612.08058 (2016).

  45. Jin, E. M., Girvan, M. & Newman, M. E. J. Structure of growing social networks. Phys. Rev. E 64, 046132 (2001).

    CAS  Google Scholar 

  46. Holme, P. & Saramäki, J. Temporal networks. Phys. Rep. 519, 97–125 (2012).

    Google Scholar 

  47. Chowdhury, S. & Mémoli, F. A functorial Dowker theorem and persistent homology of asymmetric networks. Preprint at https://arxiv.org/abs/1608.05432 (2018).

  48. Sizemore, A. E. & Bassett, D. S. Dynamic graph metrics: tutorial, toolbox, and tale. NeuroImage https://doi.org/10.1016/j.neuroimage.2017.06.081 (2017).

    PubMed  Google Scholar 

  49. Hofer, C., Kwitt, R., Niethammer, M. & Uhl, A. Deep learning with topological signatures. Preprint at https://arxiv.org/abs/1707.04041 (2018).

  50. Courtney, O. T. & Bianconi, G. Weighted growing simplicial complexes. Phys. Rev. E 95, 062301 (2017).

    PubMed  Google Scholar 

  51. Palla, G., Derényi, I., Farkas, I. & Vicsek, T. Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005).

    CAS  PubMed  Google Scholar 

  52. Aldous, D. J. in École d’Été de Probabilités de Saint-Flour XIII—1983 (ed. Hennequin, P. L.) 1–198 (Vol. 1117, Lecture Notes in Mathematics, Springer, Berlin, 1985).

  53. Hoover, D. N. Relations on Probability Spaces and Arrays of Random Variables (Institute for Advanced Study, 1979).

  54. Bianconi, G. & Rahmede, C. Emergent hyperbolic network geometry. Preprint at https://arxiv.org/abs/1607.05710 (2016).

  55. Kahle, M. et al. Limit the theorems for Betti numbers of random simplicial complexes. Homol. Homotopy Appl. 15, 343–374 (2013).

    Google Scholar 

  56. Bendich, P., Bubenik, P. & Wagner, A. Stabilizing the unstable output of persistent homology computations. Preprint at https://arxiv.org/abs/1512.01700 (2017).

  57. Mišić, B. et al. Cooperative and competitive spreading dynamics on the human connectome. Neuron 86, 1518–1529 (2015).

    PubMed  Google Scholar 

  58. Vinayagam, A.et al. A directed protein interaction network for investigating intracellular signal transduction. Sci. Signal. 4, RS8 (2011).

    PubMed  Google Scholar 

  59. Bassett, D. S., Owens, E. T., Daniels, K. E. & Porter, M. A. Influence of network topology on sound propagation in granular materials. Phys. Rev. E 86, 041306 (2012).

    Google Scholar 

  60. Cockrell, G. M. et al. New paradigm for allosteric regulation of Escherichia coli aspartate transcarbamoylase. Biochemistry 52, 8036–8047 (2013).

    CAS  PubMed  Google Scholar 

  61. Dale, P. S. & Fenson, L. Lexical development norms for young children. Behav. Res. Meth. Instr. Comp. 28, 125–127 (1996).

    Google Scholar 

  62. Barsalou, L. W. Abstraction in perceptual symbol systems. Philos. Trans. R. Soc. Lond. B 358, 1177–1187 (2003).

    Google Scholar 

  63. Hampton, J. A. Polymorphous concepts in semantic memory. J. Verb. Learn. Verb. Behav. 18, 441–461 (1979).

    Google Scholar 

  64. Wu, L.-l. & Barsalou, L. W. Perceptual simulation in conceptual combination: evidence from property generation. Acta Psychol. 132, 173–189 (2009).

    Google Scholar 

  65. Devlin, J. T., Gonnerman, L. M., Andersen, E. S. & Seidenberg, M. S. Category-specific semantic deficits in focal and widespread brain damage: a computational account. J. Cogn. Neurosci. 10, 77–94 (1998).

    CAS  PubMed  Google Scholar 

  66. Moss, H. E., Tyler, L. K. & Devlin J. T. in Category Specificity in Brain and Mind (eds Forde, E. & Humphreys, G.) 115–148 (Psychology Press, Hove, 2002).

  67. Ghrist, R. Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45, 61–75 (2008).

    Google Scholar 

  68. Henselman, G. & Ghrist, R. Matroid filtrations and computational persistent homology. Preprint at https://arxiv.org/abs/1606.00199 (2017).

  69. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52, 1059–1069 (2010).

    PubMed  Google Scholar 

  70. Watts, D. J. & Strogatz, S. H. Collective dynamics of small-world networks. Nature 393, 440–442 (1998).

    CAS  PubMed  Google Scholar 

  71. Kintali, S. Betweenness centrality: algorithms and lower bounds. Preprint at https://arxiv.org/abs/0809.1906 (2008).

Download references

Acknowledgements

The authors thank L. Torres, T. Eliassi-Rad and B. Klein for discussions. This work was supported by the National Science Foundation CAREER PHY-1554488 to D.S.B. The authors also acknowledge support from the John D. and Catherine T. MacArthur Foundation, the Alfred P. Sloan Foundation, the Paul G. Allen Foundation, the Army Research Laboratory through contract number W911NF-10-2-0022, the Army Research Office through contract numbers W911NF-14-1-0679 and W911NF-16-1-0474, the National Institute of Health (2-R01-DC-009209-11, 1R01HD086888-01, R01-MH107235, R01-MH107703, R01MH109520, 1R01NS099348 and R21-M MH-106799), the Office of Naval Research and the National Science Foundation (BCS-1441502, CAREER PHY-1554488, BCS-1631550 and CNS-1626008). The content is solely the responsibility of the authors and does not necessarily represent the official views of any of the funding agencies. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.E.S. and D.S.B. devised the experiments. A.E.S. performed the data analysis and crafted the initial draft. All authors revised the manuscript and approved the final version.

Corresponding author

Correspondence to Danielle S. Bassett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Notes, and Supplementary Figures 1–11

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sizemore, A.E., Karuza, E.A., Giusti, C. et al. Knowledge gaps in the early growth of semantic feature networks. Nat Hum Behav 2, 682–692 (2018). https://doi.org/10.1038/s41562-018-0422-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-018-0422-4

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics