Article | Published:

Arousal increases neural gain via the locus coeruleus–noradrenaline system in younger adults but not in older adults

Nature Human Behaviourvolume 2pages356366 (2018) | Download Citation


In younger adults, arousal amplifies attentional focus to the most salient or goal-relevant information while suppressing other information. A computational model of how the locus coeruleus–noradrenaline system can implement this increased selectivity under arousal and a functional magnetic resonance imaging (fMRI) study comparing how arousal affects younger and older adults’ processing indicate that the amplification of salient stimuli and the suppression of non-salient stimuli are separate processes, with ageing affecting suppression without affecting amplification under arousal. In the fMRI study, arousal increased processing of salient stimuli and decreased processing of non-salient stimuli for younger adults. By contrast, for older adults, arousal increased processing of both low- and high-salience stimuli, generally increasing excitatory responses to visual stimuli. Older adults also showed a decline in locus coeruleus functional connectivity with frontoparietal networks that coordinate attentional selectivity. Thus, among older adults, arousal increases the potential for distraction from non-salient stimuli.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus–norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005).

  2. 2.

    Mather, M., Clewett, D., Sakaki, M. & Harley, C. W. Norepinephrine ignites local hotspots of neuronal excitation: how arousal amplifies selectivity in perception and memory. Behav. Brain Sci. 39, e200 (2016).

  3. 3.

    Mather, M. & Sutherland, M. R. Arousal-biased competition in perception and memory. Perspect. Psychol. Sci. 6, 114–133 (2011).

  4. 4.

    Lee, T. H., Sakaki, M., Cheng, R., Velasco, R. & Mather, M. Emotional arousal amplifies the effects of biased competition in the brain. Soc. Cogn. Affect. Neurosci. 9, 2067–2077 (2014).

  5. 5.

    Sutherland, M. R. & Mather, M. Negative arousal amplifies the effects of saliency in short-term memory. Emotion 12, 1367–1372 (2012).

  6. 6.

    Samuels, E. R. & Szabadi, E. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Curr. Neuropharmacol. 6, 235–253 (2008).

  7. 7.

    Womelsdorf, T. & Everling, S. Long-range attention networks: circuit motifs underlying endogenously controlled stimulus selection. Trends Neurosci. 38, 682–700 (2015).

  8. 8.

    Zhang, S. et al. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345, 660–665 (2014).

  9. 9.

    Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

  10. 10.

    Guedj, C., Meunier, D., Meunier, M. & Hadj-Bouziane, F. Could LC-NE-dependent adjustment of neural gain drive functional brain network reorganization?. Neural Plast. 2017, 4328015 (2017).

  11. 11.

    Hernaus, D., Casales Santa, M. M., Offermann, J. S. & Van Amelsvoort, T. Noradrenaline transporter blockade increases fronto-parietal functional connectivity relevant for working memory. Eur. Neuropsychopharmacol. 27, 399–410 (2017).

  12. 12.

    Strange, B. A. & Dolan, R. J. β-Adrenergic modulation of oddball responses in humans. Behav. Brain Funct. 3, 29 (2007).

  13. 13.

    Bigham, M. H. & Lidow, M. S. Adrenergic and serotonergic receptors in aged monkey neocortex. Neurobiol. Aging 16, 91–104 (1995).

  14. 14.

    Moore, T. L. et al. Cognitive impairment in aged rhesus monkeys associated with monoamine receptors in the prefrontal cortex. Behav. Brain Res. 160, 208–221 (2005).

  15. 15.

    Berchtold, N. C. et al. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer’s disease. Neurobiol. Aging 34, 1653–1661 (2013).

  16. 16.

    Erraji-Benchekroun, L. et al. Molecular aging in human prefrontal cortex is selective and continuous throughout adult life. Biol. Psychiatry 57, 549–558 (2005).

  17. 17.

    Rozycka, A. & Liguz‐Lecznar, M. The space where aging acts: focus on the GABAergic synapse. Aging Cell 16, 634–643 (2017).

  18. 18.

    Kann, O., Papageorgiou, I. E. & Draguhn, A. Highly energized inhibitory interneurons are a central element for information processing in cortical networks. J. Cereb. Blood Flow. Metab. 34, 1270–1282 (2014).

  19. 19.

    Hua, T., Kao, C., Sun, Q., Li, X. & Zhou, Y. Decreased proportion of GABA neurons accompanies age-related degradation of neuronal function in cat striate cortex. Brain Res. Bull. 75, 119–125 (2008).

  20. 20.

    Spiegel, A. M., Koh, M. T., Vogt, N. M., Rapp, P. R. & Gallagher, M. Hilar interneuron vulnerability distinguishes aged rats with memory impairment. J. Comp. Neurol. 521, 3508–3523 (2013).

  21. 21.

    Braak, H. & Braak, E. Ratio of pyramidal cells versus non-pyramidal cells in the human frontal isocortex and changes in ratio with ageing and Alzheimer’s disease. Prog. Brain Res. 70, 185–212 (1986).

  22. 22.

    Stanley, E. M., Fadel, J. R. & Mott, D. D. Interneuron loss reduces dendritic inhibition and GABA release in hippocampus of aged rats. Neurobiol. Aging 33, 431.e1–431.e13 (2012).

  23. 23.

    Avelar-Pereira, B., Bäckman, L., Wåhlin, A., Nyberg, L. & Salami, A. Age-related differences in dynamic interactions among default mode, frontoparietal control, and dorsal attention networks during resting-state and interference resolution. Front. Aging Neurosci. 9, 152 (2017).

  24. 24.

    DuPre, E. & Spreng, R. N. Structural covariance networks across the life span, from 6 to 94 years of age. Netw. Neurosci. 1, 302–323 (2017).

  25. 25.

    Grady, C., Sarraf, S., Saverino, C. & Campbell, K. Age differences in the functional interactions among the default, frontoparietal control, and dorsal attention networks. Neurobiol. Aging 41, 159–172 (2016).

  26. 26.

    Mitchell, K. J., Ankudowich, E., Durbin, K. A., Greene, E. J. & Johnson, M. K. Age-related differences in agenda-driven monitoring of format and task information. Neuropsychologia 51, 2427–2441 (2013).

  27. 27.

    Nashiro, K., Sakaki, M., Braskie, M. N. & Mather, M. Resting-state networks associated with cognitive processing show more age-related decline than those associated with emotional processing. Neurobiol. Aging 54, 152–162 (2017).

  28. 28.

    Siman-Tov, T. et al. Early age-related functional connectivity decline in high-order cognitive networks. Front. Aging Neurosci. 8, 330 (2017).

  29. 29.

    Downing, P. E., Chan, A. W. Y., Peelen, M. V., Dodds, C. M. & Kanwisher, N. Domain specificity in visual cortex. Cereb. Cortex 16, 1453–1461 (2006).

  30. 30.

    Slaney, T. R., Mabrouk, O. S., Porter-Stransky, K. A., Aragona, B. J. & Kennedy, R. T. Chemical gradients within brain extracellular space measured using low flow push–pull perfusion sampling in vivo. ACS Chem. Neurosci. 4, 321–329 (2013).

  31. 31.

    Harley, C. W., Lalies, M. D. & Nutt, D. J. Estimating the synaptic concentration of norepinephrine in dentate gyrus which produces β-receptor mediated long-lasting potentiation in vivo using microdialysis and intracerebroventricular norepinephrine. Brain Res. 710, 293–298 (1996).

  32. 32.

    Salgado, H., Kohr, G. & Trevino, M. Noradrenergic ‘tone’ determines dichotomous control of cortical spike-timing-dependent plasticity. Sci. Rep. 2, 417 (2012).

  33. 33.

    Ferrero, J. J. et al. β-Adrenergic receptors activate exchange protein directly activated by cAMP (Epac), translocate Munc13-1, and enhance the Rab3A–Rim1α interaction to potentiate glutamate release at cerebrocortical nerve terminals. J. Biol. Chem. 288, 31370–31385 (2013).

  34. 34.

    Nai, Q., Dong, H.-W., Hayar, A., Linster, C. & Ennis, M. Noradrenergic regulation of GABAergic inhibition of main olfactory bulb mitral cells varies as a function of concentration and receptor subtype. J. Neurophysiol. 101, 2472–2484 (2009).

  35. 35.

    Amara, S. G. & Kuhar, M. J. Neurotransmitter transporters: recent progress. Annu. Rev. Neurosci. 16, 73–93 (1993).

  36. 36.

    Nee, D. E., Wager, T. D. & Jonides, J. Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cogn. Affect. Behav. Neurosci. 7, 1–17 (2007).

  37. 37.

    Scolari, M., Seidl-Rathkopf, K. N. & Kastner, S. Functions of the human frontoparietal attention network: evidence from neuroimaging. Curr. Opin. Behav. Sci. 1, 32–39 (2015).

  38. 38.

    Berridge, C. W. & Waterhouse, B. D. The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Rev. 42, 33–84 (2003).

  39. 39.

    Toussay, X., Basu, K., Lacoste, B. & Hamel, E. Locus coeruleus stimulation recruits a broad cortical neuronal network and increases cortical perfusion. J. Neurosci. 33, 3390–3401 (2013).

  40. 40.

    Napadow, V., Dhond, R., Kennedy, D., Hui, K. K. & Makris, N. Automated brainstem co-registration (ABC) for MRI. Neuroimage 32, 1113–1119 (2006).

  41. 41.

    Laird, A. R. et al. Behavioral interpretations of intrinsic connectivity networks. J. Cogn. Neurosci. 23, 4022–4037 (2011).

  42. 42.

    Zhang, S., Hu, S., Chao, H. H. & Li, C.-S. R. Resting-state functional connectivity of the locus coeruleus in humans: in comparison with the ventral tegmental area/substantia nigra pars compacta and the effects of age. Cereb. Cortex 26, 3413–3427 (2016).

  43. 43.

    Gannon, M. & Wang, Q. Complex noradrenergic dysfunction in Alzheimer’s disease: low norepinephrine input is not always to blame. Brain Res. (2018).

  44. 44.

    Healey, M. K., Hasher, L. & Campbell, K. L. The role of suppression in resolving interference: evidence for an age-related deficit. Psychol. Aging 28, 721–728 (2013).

  45. 45.

    Gazzaley, A., Cooney, J. W., Rissman, J. & D’Esposito, M. Top-down suppression deficit underlies working memory impairment in normal aging. Nat. Neurosci. 8, 1298–1300 (2005).

  46. 46.

    Mitchell, K. J., Johnson, M. R., Higgins, J. A. & Johnson, M. K. Age differences in brain activity during perceptual versus reflective attention. Neuroreport 21, 293–297 (2010).

  47. 47.

    Smith, S. M. et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004).

  48. 48.

    Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002).

  49. 49.

    Smith, S. M. Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155 (2002).

  50. 50.

    Beckmann, C. F. & Smith, S. M. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23, 137–152 (2004).

  51. 51.

    Tohka, J. et al. Automatic independent component labeling for artifact removal in fMRI. Neuroimage 39, 1227–1245 (2008).

  52. 52.

    Brady, T. F., Konkle, T., Alvarez, G. A. & Oliva, A. Visual long-term memory has a massive storage capacity for object details. Proc. Natl Acad. Sci. USA 105, 14325–14329 (2008).

  53. 53.

    Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).

  54. 54.

    Pelli, D. G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997).

  55. 55.

    Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998).

  56. 56.

    Epstein, R. The cortical basis of visual scene processing. Vis. Cogn. 12, 954–978 (2005).

  57. 57.

    Grill-Spector, K. & Malach, R. fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol. 107, 293–321 (2001).

  58. 58.

    Erez, Y. & Yovel, G. Clutter modulates the representation of target objects in the human occipitotemporal cortex. J. Cogn. Neurosci. 26, 490–500 (2014).

  59. 59.

    Altmann, C. F., Deubelius, A. & Kourtzi, Z. Shape saliency modulates contextual processing in the human lateral occipital complex. J. Cogn. Neurosci. 16, 794–804 (2004).

  60. 60.

    Gazzaley, A. et al. Functional interactions between prefrontal and visual association cortex contribute to top-down modulation of visual processing. Cereb. Cortex 17, I125–I135 (2007).

  61. 61.

    Mumford, J. A., Turner, B. O., Ashby, F. G. & Poldrack, R. A. Deconvolving BOLD activation in event-related designs for multivoxel pattern classification analyses. Neuroimage 59, 2636–2643 (2012).

  62. 62.

    Okubo, Y. et al. Imaging extrasynaptic glutamate dynamics in the brain. Proc. Natl Acad. Sci. USA 107, 6526–6531 (2010).

  63. 63.

    Keren, N. I., Lozar, C. T., Harris, K. C., Morgan, P. S. & Eckert, M. A. In vivo mapping of the human locus coeruleus. Neuroimage 47, 1261–1267 (2009).

Download references


This work was supported by grants from the National Institute on Aging RO1AG025340 awarded to M.M., JSPS KAKENHI 16H03750 and 15K21062 awarded to T.U., and JSPS KAKENHI 16H05959, 16KT0002 and 16H02053 and European Commission CIG618600 awarded to M.S. We thank C. Cho for assistance with Figs. 1 and 7. The funders had no role in the conceptualization, design, data collection, analysis, decision to publish or preparation of the manuscript.

Author information


  1. Department of Psychology, University of Southern California, Los Angeles, CA, USA

    • Tae-Ho Lee
    • , Steven G. Greening
    •  & Mara Mather
  2. Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA

    • Tae-Ho Lee
    • , Steven G. Greening
    • , Allison Ponzio
    •  & Mara Mather
  3. Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

    • Tae-Ho Lee
  4. Department of Psychology, Louisiana State University, Baton Rouge, LA, USA

    • Steven G. Greening
  5. School of Human Sciences, Takachiho University, Suginami, Tokyo, Japan

    • Taiji Ueno
  6. Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA

    • David Clewett
    •  & Mara Mather
  7. Department of Psychology, New York University, New York, NY, USA

    • David Clewett
  8. School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK

    • Michiko Sakaki


  1. Search for Tae-Ho Lee in:

  2. Search for Steven G. Greening in:

  3. Search for Taiji Ueno in:

  4. Search for David Clewett in:

  5. Search for Allison Ponzio in:

  6. Search for Michiko Sakaki in:

  7. Search for Mara Mather in:


T.-H.L. and M.M. designed the study. T.-H.L., S.G.-G. and A.P. acquired the data. Data were analysed by T.-H.L. with S.G.-G., D.C. and M.M. Modelling was conducted by T.U. and M.S. All the authors contributed to the preparation of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Mara Mather.

Supplementary information

  1. Supplementary Information

    Supplementary Figures, Supplementary Tables, Supplementary References

  2. Reporting Summary

About this article

Publication history