Article | Published:

Right but not left hemispheric discrimination of faces in infancy

Nature Human Behaviourvolume 2pages6779 (2018) | Download Citation


The ontogeny of the functional asymmetries of the human brain is poorly understood. Are they a consequence of differential development based on competition mechanisms, or are they constitutive of the human brain architecture from the start? Using structural magnetic resonance imaging and a face-discrimination electroencephalography paradigm with lateralized presentation of faces, we studied face perception in infants over the first postnatal semester. We showed that the corpus callosum is sufficiently mature to transfer visual information across hemispheres, but the inter-hemispheric transfer time of early visual responses is modulated by callosal fibre myelination. We also revealed that only the right hemisphere shows evidence of face discrimination when presented in the left visual hemifield. This capability improved throughout the first semester with no evidence of discrimination in the left hemisphere. Face-processing lateralization is thus a characteristic of the infant’s extra-striate visual cortex, highlighting the differential left–right organization of the human brain already established in infanthood.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Dehaene, S. Reading in the Brain: The New Science of How We Read (Penguin, New York, NY, 2009).

  2. 2.

    Rakic, P. Specification of cerebral cortical areas. Science 241, 170–176 (1988).

  3. 3.

    de Schonen, S. & Mathivet, E. First come, first served: a scenario about the development of hemispheric specialization in face recognition during infancy. Curr. Psychol. Cogn. 9, 3–44 (1989).

  4. 4.

    Dehaene-Lambertz, G. & Spelke, E. S. The infancy of the human brain. Neuron 88, 93–109 (2015).

  5. 5.

    Leroy, F. et al. Early maturation of the linguistic dorsal pathway in human infants. J. Neurosci. 31, 1500–1506 (2011).

  6. 6.

    Dubois, J. et al. Microstructural correlates of infant functional development: example of the visual pathways. J. Neurosci. 28, 1943–1948 (2008).

  7. 7.

    Dubois, J. et al. Exploring the early organization and maturation of linguistic pathways in the human infant brain. Cereb. Cortex 26, 2283–2298 (2016).

  8. 8.

    Johnson, M. H. Functional brain development in humans. Nat. Rev. Neurosci. 2, 475–483 (2001).

  9. 9.

    Saygin, Z. M. et al. Connectivity precedes function in the development of the visual word form area. Nat. Neurosci. 19, 1250–1255 (2016).

  10. 10.

    Dundas, E. M., Plaut, D. C. & Behrmann, M. The joint development of hemispheric lateralization for words and faces. J. Exp. Psychol. Gen. 142, 348–358 (2013).

  11. 11.

    Monzalvo, K., Fluss, J., Billard, C., Dehaene, S. & Dehaene-Lambertz, G. Cortical networks for vision and language in dyslexic and normal children of variable socio-economic status. Neuroimage 61, 258–274 (2012).

  12. 12.

    Dehaene, S. et al. How learning to read changes the cortical networks for vision and language. Science 330, 1359–1364 (2010).

  13. 13.

    Le Grand, R., Mondloch, C. J., Maurer, D. & Brent, H. P. Expert face processing requires visual input to the right hemisphere during infancy. Nat. Neurosci. 6, 1108–1112 (2003).

  14. 14.

    Acerra, F., Burnod, Y. & de Schonen, S. Modelling aspects of face processing in early infancy. Dev. Sci. 5, 98–117 (2002).

  15. 15.

    Gauthier, I. & Nelson, C. A. The development of face expertise. Curr. Opin. Neurobiol. 11, 219–224 (2001).

  16. 16.

    Morton, J. & Johnson, M. H. CONSPEC and CONLERN: a two-process theory of infant face recognition. Psychol. Rev. 98, 164–181 (1991).

  17. 17.

    Bushnell, I. W. R., Sai, F. & Mullin, J. T. Neonatal recognition of the mother’s face. Br. J. Dev. Psychol. 7, 3–15 (1989).

  18. 18.

    Pascalis, O., de Schonen, S., Morton, J., Deruelle, C. & Fabre-Grenet, M. Mother’s face recognition by neonates: a replication and an extension. Infant Behav. Devel. 18, 79–85 (1995).

  19. 19.

    Turati, C., Bulf, H. & Simion, F. Newborns’ face recognition over changes in viewpoint. Cognition 106, 1300–1321 (2008).

  20. 20.

    Cohen, L. B. & Strauss, M. S. Concept acquisition in the human infant. Child Dev. 50, 419–424 (1979).

  21. 21.

    Kelly, D. J. et al. Three-month-olds, but not newborns, prefer own-race faces. Dev. Sci. 8, F31–F36 (2005).

  22. 22.

    Quinn, P. C. et al. Infant preference for female faces occurs for same- but not other-race faces. J. Neuropsychol. 2, 15–26 (2008).

  23. 23.

    Quinn, P. C., Yahr, J., Kuhn, A., Slater, A. M. & Pascalils, O. Representation of the gender of human faces by infants: a preference for female. Perception 31, 1109–1121 (2002).

  24. 24.

    Righi, G., Westerlund, A., Congdon, E. L., Troller-Renfree, S. & Nelson, C. A. Infants’ experience-dependent processing of male and female faces: insights from eye tracking and event-related potentials. Dev. Cogn. Neurosci. 8, 144–152 (2014).

  25. 25.

    de Haan, M., Pascalis, O. & Johnson, M. H. Specialization of neural mechanisms underlying face recognition in human infants. J. Cogn. Neurosci. 14, 199–209 (2002).

  26. 26.

    Gliga, T. & Dehaene-Lambertz, G. Structural encoding of body and face in human infants and adults. J. Cogn. Neurosci. 17, 1328–1340 (2005).

  27. 27.

    Gliga, T. & Dehaene-Lambertz, G. Development of a view-invariant representation of the human head. Cognition 102, 261–288 (2007).

  28. 28.

    Halit, H., de Haan, M. & Johnson, M. H. Cortical specialisation for face processing: face-sensitive event-related potential components in 3- and 12-month-old infants. Neuroimage 19, 1180–1193 (2003).

  29. 29.

    Key, A. P. F. & Stone, W. L. Processing of novel and familiar faces in infants at average and high risk for autism. Dev. Cogn. Neurosci. 2, 244–255 (2012).

  30. 30.

    Peykarjou, S., Pauen, S. & Hoehl, S. 9-month-old infants recognize individual unfamiliar faces in a rapid repetition ERP paradigm. Infancy 21, 288–311 (2016).

  31. 31.

    Scott, L. S. & Nelson, C. A. Featural and configural face processing in adults and infants: a behavioral and electrophysiological investigation. Perception 35, 1107–1128 (2006).

  32. 32.

    Scott, L. S., Shannon, R. W. & Nelson, C. A. Neural correlates of human and monkey face processing in 9-month-old infants. Infancy 10, 171–186 (2006).

  33. 33.

    de Heering, A. & Rossion, B. Rapid categorization of natural face images in the infant right hemisphere. eLife 4, e06564 (2015).

  34. 34.

    Rossion, B., Torfs, K., Jacques, C. & Liu-Shuang, J. Fast periodic presentation of natural images reveals a robust face-selective electrophysiological response in the human brain. J. Vis. 15, 1–18 (2015).

  35. 35.

    Honda, Y. et al. How do infants perceive scrambled face? A near-infrared spectroscopic study. Brain Res. 1308, 137–146 (2010).

  36. 36.

    Nakato, E. et al. I know this face: neural activity during mother’s face perception in 7- to 8-month-old infants as investigated by near-infrared spectroscopy. Early Hum. Dev. 87, 1–7 (2011).

  37. 37.

    Otsuka, Y. et al. Neural activation to upright and inverted faces in infants measured by near infrared spectroscopy. Neuroimage 34, 399–406 (2007).

  38. 38.

    Nakato, E. et al. When do infants differentiate profile face from frontal face? A near-infrared spectroscopic study. Human Brain Mapp. 30, 462–472 (2009).

  39. 39.

    Tzourio-Mazoyer, N. et al. Neural correlates of woman face processing by 2-month-old infants. Neuroimage 15, 454–461 (2002).

  40. 40.

    Deen, B. et al. Organization of high-level visual cortex in human infants. Nat. Commun. 8, 13995 (2017).

  41. 41.

    Scherf, K. S., Behrmann, M., Humphreys, K. & Luna, B. Visual category-selectivity for faces, places and objects emerges along different developmental trajectories. Dev. Sci. 10, F15–F30 (2007).

  42. 42.

    Cantlon, J. F., Pinel, P., Dehaene, S. & Pelphrey, K. A. Cortical representations of symbols, objects, and faces are pruned back during early childhood. Cereb. Cortex 21, 191–199 (2011).

  43. 43.

    Gathers, A. D., Bhatt, R., Corbly, C. R., Farley, A. B. & Joseph, J. E. Developmental shifts in cortical loci for face and object recognition. Neuroreport 15, 1549–1553 (2004).

  44. 44.

    Golarai, G. et al. Differential development of high-level visual cortex correlates with category-specific recognition memory. Nat. Neurosci. 10, 512–522 (2007).

  45. 45.

    Peelen, M. V., Glaser, B., Vuilleumier, P. & Eliez, S. Differential development of selectivity for faces and bodies in the fusiform gyrus. Dev. Sci. 12, F16–F25 (2009).

  46. 46.

    Gomez, J. et al. Microstructural proliferation in human cortex is coupled with the development of face processing. Science 355, 68–71 (2017).

  47. 47.

    Rizzolatti, G., Umilta, C. & Berlucchi, G. Opposite superiorities of the right and left cerebral hemispheres in discriminative reaction time to physiognomical and alphabetical material. Brain 94, 431–442 (1971).

  48. 48.

    Cohen, L. et al. The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain 123, 291–307 (2000).

  49. 49.

    Verosky, S. C. & Turk-Browne, N. B. Representations of facial identity in the left hemisphere require right hemisphere processing. J. Cogn. Neurosci. 24, 1006–1017 (2012).

  50. 50.

    de Schonen, S., de Diaz, M. G. D. & Mathivet, E. in Aspects of Face Processing (eds Ellis, H. D., Jeeves, M., Newcombe, F. & Young, A.) 199–209 (Springer Amsterdam, 1986).

  51. 51.

    de Schonen, S. & Mathivet, E. Hemispheric asymmetry in a face discrimination task in infants. Child Dev. 61, 1192–1205 (1990).

  52. 52.

    Deruelle, C. & de Schonen, S. Do the right and left hemispheres attend to the same visuospatial information within a face in infancy? Dev. Neuropsychol. 14, 535–554 (1998).

  53. 53.

    Kostovic, I. & Jovanov-Milosevic, N. The development of cerebral connections during the first 20–45 weeks’ gestation. Semin. Fetal Neonatal Med. 11, 415–422 (2006).

  54. 54.

    Brody, B. A., Kinney, H. C., Kloman, A. S. & Gilles, F. H. Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J. Neuropathol. Exp. Neurol. 46, 283–301 (1987).

  55. 55.

    Yakovlev P. L. & Lecours, A. R. in Regional Development of the Brain in Early Life (ed. Minkowski, A.) 3–69 (Blackwell, Oxford, 1967).

  56. 56.

    Nakagawa, H. et al. Normal myelination of anatomic nerve fiber bundles: MR analysis. AJNR Am. J. Neuroradiol. 19, 1129–1136 (1998).

  57. 57.

    Levitan, S. & Reggia, J. A. A computational model of lateralization and asymmetries in cortical maps. Neural Comput. 12, 2037–2062 (2000).

  58. 58.

    de Schonen, S. & Bry, I. Interhemispheric communication of visual learning: a developmental study in 3–6-month old infants. Neuropsychologia 25, 601–612 (1987).

  59. 59.

    Liégeois, F., Bentejac, L. & de Schonen, S. When does inter-hemispheric integration of visual events emerge in infancy? A developmental study on 19- to 28-month-old infants. Neuropsychologia 38, 1382–1389 (2000).

  60. 60.

    Sann, C. & Streri, A. Perception of object shape and texture in human newborns: evidence from cross-modal transfer tasks. Dev. Sci. 10, 399–410 (2007).

  61. 61.

    Flechsig, P. E. Anatomie des menschlichen Gehirns und Rückenmarks auf myelogenetischer Grundlage Vol. 1 (G. Thieme, Leipzig, 1920).

  62. 62.

    Dubois, J. et al. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276, 48–71 (2014).

  63. 63.

    Neil, J., Miller, J., Mukherjee, P. & Huppi, P. S. Diffusion tensor imaging of normal and injured developing human brain—a technical review. NMR Biomed. 15, 543–552 (2002).

  64. 64.

    Song, S. K. et al. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20, 1714–1722 (2003).

  65. 65.

    Song, S. K. et al. Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage 26, 132–140 (2005).

  66. 66.

    McCulloch, D. L., Orbach, H. & Skarf, B. Maturation of the pattern-reversal VEP in human infants: a theoretical framework. Vision Res. 39, 3673–3680 (1999).

  67. 67.

    Westerhausen, R. et al. Interhemispheric transfer time and structural properties of the corpus callosum. Neurosci. Lett. 409, 140–145 (2006).

  68. 68.

    Whitford, T. J. et al. Predicting inter-hemispheric transfer time from the diffusion properties of the corpus callosum in healthy individuals and schizophrenia patients: a combined ERP and DTI study. Neuroimage 54, 2318–2329 (2011).

  69. 69.

    Horowitz, A. et al. In vivo correlation between axon diameter and conduction velocity in the human brain. Brain Struct. Funct. 220, 1777–1788 (2015).

  70. 70.

    Akaike, H. in International Encyclopedia of Statistical Science (ed. Lovric, M.) 25 (Springer, Berlin, 2011).

  71. 71.

    Lippe, S., Roy, M.-S., Perchet, C. & Lassonde, M. Electrophysiological markers of visuocortical development. Cereb. Cortex 17, 100–107 (2007).

  72. 72.

    Allen, D., Tyler, C. W. & Norcia, A. M. Development of grating acuity and contrast sensitivity in the central and peripheral visual field of the human infant. Vision Res. 36, 1945–1953 (1996).

  73. 73.

    Tachibanaki, S., Arinobu, D., Shimauchi-Matsukawa, Y., Tsushima, S. & Kawamura, S. Highly effective phosphorylation by G protein-coupled receptor kinase 7 of light-activated visual pigment in cones. Proc. Natl Acad. Sci. USA 102, 9329–9334 (2005).

  74. 74.

    Saron, C. D. & Davidson, R. J. Visual evoked potential measures of interhemispheric transfer time in humans. Behav. Neurosci. 103, 1115–1138 (1989).

  75. 75.

    Honda, Y., Watanabe, S., Nakamura, M., Miki, K. & Kakigi, R. Interhemispheric difference for upright and inverted face perception in humans: an event-related potential study. Brain Topogr. 20, 31–39 (2007).

  76. 76.

    Ringo, J. L., Doty, R. W., Demeter, S. & Simard, P. Y. Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. Cereb. Cortex 4, 331–343 (1994).

  77. 77.

    Kulke, L., Atkinson, J. & Braddick, O. Automatic detection of attention shifts in infancy: eye tracking in the fixation shift paradigm. PLoS ONE 10, e0142505 (2015).

  78. 78.

    Rossion, B. & Caharel, S. ERP evidence for the speed of face categorization in the human brain: disentangling the contribution of low-level visual cues from face perception. Vision Res. 51, 1297–1311 (2011).

  79. 79.

    Yovel, G., Tambini, A. & Brandman, T. The asymmetry of the fusiform face area is a stable individual characteristic that underlies the left-visual-field superiority for faces. Neuropsychologia 46, 3061–3068 (2008).

  80. 80.

    Kobayashi, M., Cassia, V. M., Kanazawa, S., Yamaguchi, M. K. & Kakigi, R. Perceptual narrowing towards adult faces is a cross-cultural phenomenon in infancy a behavioral and near-infrared spectroscopy study with Japanese infants. Dev. Sci. (2016).

  81. 81.

    Kobayashi, M. et al. Do infants represent the face in a viewpoint-invariant manner? Neural adaptation study as measured by near-infrared spectroscopy. Front. Hum. Neurosci. 5, 153 (2011).

  82. 82.

    Sangrigoli, S. & de Schonen, S. Recognition of own-race and other-race faces by three-month-old infants. J. Child Psychol. Psychiatry 45, 1219–1227 (2004).

  83. 83.

    Bhatt, R. S., Bertin, E., Hayden, A. & Reed, A. Face processing in infancy: developmental changes in the use of different kinds of relational information. Child Dev. 76, 169–181 (2005).

  84. 84.

    Bhatt, R. S., Bertin, E., Hayden, A. & Reed, A. Face processing in infancy developmental changes in the use of different kinds of relational information. Child Dev. 76, 169–181 (2005).

  85. 85.

    Weiner, K. S. et al. The cytoarchitecture of domain-specific regions in human high-level visual cortex. Cereb. Cortex 27, 146–161 (2016).

  86. 86.

    Kabdebon, C. et al. Anatomical correlations of the international 10–20 sensor placement system in infants. Neuroimage 99, 342–356 (2014).

  87. 87.

    Dubois, J. et al. Correction strategy for diffusion-weighted images corrupted with motion: application to the DTI evaluation of infants’ white matter. Magn. Reson. Imaging 32, 981–992 (2014).

  88. 88.

    Duclap, D. et al. Connectomist-2.0: a novel diffusion analysis toolbox for BrainVISA. in 29th ESMRMB (2012).

  89. 89.

    Behrens, T. E., Berg, H. J., Jbabdi, S., Rushworth, M. F. & Woolrich, M. W. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage 34, 144–155 (2007).

  90. 90.

    Hua, K. et al. Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage 39, 336–347 (2008).

  91. 91.

    Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).

  92. 92.

    Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D. & Leahy, R. M. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 879716 (2011).

  93. 93.

    Kouider, S. et al. A neural marker of perceptual consciousness in infants. Science 340, 376–380 (2013).

Download references


This research was supported by grants from the Fondation de France and the Fyssen Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank all the infants and their parents who participated in this study as well as G. Santoro and the medical team of UNIACT at Neurospin, who helped to carry out the experiments; C. Kabdebon, P. Barttfeld, J. Lebenberg and F. Leroy for their help with the EEG and MRI analyses; and E. Moulton for proofreading the text. We thank our colleagues for providing their pictures to be used as stimuli in our paradigm.

Author information


  1. Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, NeuroSpin Center, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France

    • Parvaneh Adibpour
    • , Jessica Dubois
    •  & Ghislaine Dehaene-Lambertz


  1. Search for Parvaneh Adibpour in:

  2. Search for Jessica Dubois in:

  3. Search for Ghislaine Dehaene-Lambertz in:


All authors contributed to data collection, analysis, interpretation and drafting of the Article. J.D. and G.D.-L. designed the experiments.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Ghislaine Dehaene-Lambertz.

Supplementary information

About this article

Publication history




Issue Date


Further reading