Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Limited individual attention and online virality of low-quality information

This article was retracted on 07 January 2019

Abstract

Social media are massive marketplaces where ideas and news compete for our attention1. Previous studies have shown that quality is not a necessary condition for online virality2 and that knowledge about peer choices can distort the relationship between quality and popularity3. However, these results do not explain the viral spread of low-quality information, such as the digital misinformation that threatens our democracy4. We investigate quality discrimination in a stylized model of an online social network, where individual agents prefer quality information, but have behavioural limitations in managing a heavy flow of information. We measure the relationship between the quality of an idea and its likelihood of becoming prevalent at the system level. We find that both information overload and limited attention contribute to a degradation of the market’s discriminative power. A good tradeoff between discriminative power and diversity of information is possible according to the model. However, calibration with empirical data characterizing information load and finite attention in real social media reveals a weak correlation between quality and popularity of information. In these realistic conditions, the model predicts that low-quality information is just as likely to go viral, providing an interpretation for the high volume of misinformation we observe online.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Illustration of the meme diffusion model and predicted popularity distributions.
Figure 2: Average popularity of memes.
Figure 3: Discriminative power and diversity.
Figure 4: Tradeoff between discriminative power with diversity, and empirical calibration.
Figure 5: Popularity distributions.

References

  1. 1

    Simon, H . in Computers, Communication, and the Public Interest (ed. Greenberger, M. ) 37–52 (Johns Hopkins Univ. Press, 1971).

    Google Scholar 

  2. 2

    Weng, L., Flammini, A., Vespignani, A. & Menczer, F. Competition among memes in a world with limited attention. Sci. Rep. 2, 335 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Salganik, M. J., Dodds, P. S. & Watts, D. J . Experimental study of inequality and unpredictability in an artificial cultural market. Science 311, 854–856 (2006).

    Google Scholar 

  4. 4

    Howell, L. et al. in Global Risks 2013 8th edn (ed. Howell, L.) Section 2 (World Economic Forum, 2013); http://reports.weforum.org/global-risks-2013/risk-case-1/digital-wildfires-in-a-hyperconnected-world/

  5. 5

    Milton, J . Areopagitica (1644); http://www.dartmouth.edu/~milton/reading_room/areopagitica/text.html

  6. 6

    Bonilla, J. P. Z . in Philosophy of Economics (ed. Mäki, U. ) 823–862 (Handbook of the Philosophy of Science Series, North-Holland, 2012).

    Google Scholar 

  7. 7

    Dawkins, R . The Selfish Gene (Oxford Univ. Press, 1989).

    Google Scholar 

  8. 8

    Gonçalves, B., Perra, N. & Vespignani A. Modeling users’ activity on twitter networks: validation of Dunbar’s number. PLoS ONE 6, e22656 (2011).

    Google Scholar 

  9. 9

    Goldhaber, M. H . The attention economy and the net. First Monday http://dx.doi.org/10.5210/fm.v2i4.519 (1997).

  10. 10

    Falkinger, J . Attention economies. J. Econ. Theory 133, 266–294 (2007).

    Google Scholar 

  11. 11

    Ciampaglia, G. L., Flammini, A. & Menczer, F . The production of information in the attention economy. Sci. Rep. 5, 9452 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Conover, M., Gonçalves, B., Ratkiewicz, J., Flammini, A. & Menczer, F . Predicting the political alignment of twitter users. In Proc. 3rd IEEE Conference on Social Computing (SocialCom) 192–199 (IEEE, 2011).

  13. 13

    Conover, M. D., Gonçalves, B., Flammini, A. & Menczer, F . Partisan asymmetries in online political activity. EPJ Data Sci. 1, 6 (2012).

    Google Scholar 

  14. 14

    DiGrazia, J., McKelvey, K., Bollen, J. & Rojas, F . More tweets, more votes: social media as a quantitative indicator of political behaviour. PLoS ONE 8, e79449 (2013).

    PubMed  PubMed Central  Google Scholar 

  15. 15

    Adler, M . Stardom and talent. Am. Econ. Rev. 75, 208–12 (1985).

    Google Scholar 

  16. 16

    Bailard, C. S . Democracy’s Double-Edged Sword: How Internet Use Changes Citizens’ Views of Their Government (Johns Hopkins Univ. Press, 2014).

    Google Scholar 

  17. 17

    Surowiecki, J . The Wisdom of Crowds (Anchor, 2005).

    Google Scholar 

  18. 18

    Page, S. E . The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies (Princeton Univ. Press, 2008).

    Google Scholar 

  19. 19

    Lorenz, J., Rauhut, H., Schweitzer, F. & Helbing, D . How social influence can undermine the wisdom of crowd effect. Proc. Natl Acad. Sci. USA 108, 9020–9025 (2011).

    Google Scholar 

  20. 20

    Collins, E. C., Percy, E. J., Smith, E. R. & Kruschke, J. K . Integrating advice and experience: learning and decision making with social and nonsocial cues. J. Pers. Soc. Psychol. 100, 967–982 (2011).

    Google Scholar 

  21. 21

    Smith, E. R. & Collins, E. C . Contextualizing person perception: distributed social cognition. Psychol. Rev. 116, 343–364 (2009).

    Google Scholar 

  22. 22

    Nickerson, R. S . Confirmation bias: a ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 2, 175–220 (1998).

    Google Scholar 

  23. 23

    Smith, E. R . Evil acts and malicious gossip: a multiagent model of the effects of gossip in socially distributed person perception. Pers. Soc. Psychol. Rev. 18, 311–325 (2014).

    PubMed  Google Scholar 

  24. 24

    Centola, D. & Macy, M . Complex contagions and the weakness of long ties. Am. J. Sociol. 113, 702–734 (2007).

    Google Scholar 

  25. 25

    Hiltz, S. R. & Turoff, M . Structuring computer-mediated communication systems to avoid information overload. Commun. ACM 28, 680–689 (1985).

    Google Scholar 

  26. 26

    Frey, D . Recent research on selective exposure to information. J. Exp. Soc. Psychol. 19, 41–80 (1986).

    Google Scholar 

  27. 27

    Weng, L. et al. The role of information diffusion in the evolution of social networks. In Proc. 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (eds Dhillon, I. S. et al.) 356–364 (ACM, 2013).

  28. 28

    Babaei, M., Grabowicz, P., Valera, I., Gummadi, K. P. & Gomez-Rodriguez, M . On the efficiency of the information networks in social media. In Proc. 9th ACM International Conference on Web Search and Data Mining 83–92 (ACM, 2016).

  29. 29

    Axelrod, R . The dissemination of culture a model with local convergence and global polarization. J. Confl. Resolut. 41, 203–226 (1997).

    Google Scholar 

  30. 30

    Sunstein, C. R . Republic.com 2.0 (Princeton Univ. Press, 2009).

    Google Scholar 

  31. 31

    Pariser, E . The Filter Bubble: How the New Personalized Web Is Changing What We Read and How We Think (Penguin, 2011).

    Google Scholar 

  32. 32

    Sunstein, C. R . The law of group polarization. J. Political Philos. 10, 175–195 (2002).

    Google Scholar 

  33. 33

    Conover, M. et al. Political polarization on twitter. In Proc. 5th International AAAI Conference on Weblogs and Social Media (AAAI, 2011).

  34. 34

    Stanovich, K. E., West, R. F & Toplak, M. E . Myside bias, rational thinking, and intelligence. Curr. Dir. Psychol. Sci. 22, 259–264 (2013).

    Google Scholar 

  35. 35

    Nikolov, D., Oliveira, D. F. M., Flammini, A. & Menczer, F . Measuring online social bubbles. PeerJ Comput. Sci. 1, e38 (2015).

    Google Scholar 

  36. 36

    Mason, W. A., Conrey, F. R. & Smith, E. R . Situating social influence processes: dynamic, multidirectional flows of influence within social networks. Pers. Soc. Psychol. Rev. 11, 279–300 2007.

    PubMed  Google Scholar 

  37. 37

    Nisbett, R. & Ross, L . The Person and the Situation (McGraw-Hill, 1991).

    Google Scholar 

  38. 38

    Nyhan, B. & Reifler, J . When corrections fail: the persistence of political misperceptions. J. Polit. Behav. 32, 303–330 (2010).

    Google Scholar 

  39. 39

    Vicario, M. D. et al. The spreading of misinformation online. Proc. Natl Acad. Sci. USA 113, 554–559 (2016).

    PubMed  Google Scholar 

  40. 40

    Ratkiewicz, J. et al. Detecting and tracking political abuse in social media. In Proc. 5th International AAAI Conference on Weblogs and Social Media (AAAI, 2011).

  41. 41

    Ferrara, E., Varol, O., Davis, C., Menczer, F. & Flammini, A . The rise of social bots. Comm. ACM 57, 96–104 (2016).

    Google Scholar 

  42. 42

    Crane, R. & Sornette, D . Robust dynamic classes revealed by measuring the response function of a social system. Proc. Natl Acad. Sci. USA 105, 15649–15653 (2008).

    CAS  PubMed  Google Scholar 

  43. 43

    Ratkiewicz, J., Fortunato, S., Flammini, A., Menczer, F. & Vespignani, A . Characterizing and modeling the dynamics of online popularity. Phys. Rev. Lett. 105, 158701(2010).

    PubMed  Google Scholar 

  44. 44

    Bingol, H . Fame emerges as a result of small memory. Phys. Rev. E 77, 036118 (2008).

    Google Scholar 

  45. 45

    Huberman, B. A . Social computing and the attention economy. J. Stat. Phys. 151, 329–339 (2013).

    Google Scholar 

  46. 46

    Wu, F. & Huberman, B. A . Novelty and collective attention. Proc. Natl Acad. Sci. USA 104, 17599–17601 (2007).

    CAS  PubMed  Google Scholar 

  47. 47

    Hodas, N. O. & Lerman, K . How visibility and divided attention constrain social contagion. In Proc. ASE/IEEE International Conference on Social Computing 249–257 (IEEE, 2012).

  48. 48

    Kang, J.-H. & Lerman, K . in Social Computing, Behavioral Modeling and Prediction. SBP 2015. Lecture Notes in Computer Science Vol. 9021 (eds Agarwal, N. et al.) 101–110 (Springer, 2015).

  49. 49

    Gleeson, J. P., Ward, J. A., O’Sullivan, K. P. & Lee, W. T . Competition-induced criticality in a model of meme popularity. Phys. Rev. Lett. 112, 048701 (2014).

    PubMed  Google Scholar 

  50. 50

    Gleeson, J. P., O’Sullivan, K. P., Baños, R. A. & Moreno, Y . Effects of network structure, competition and memory time on social spreading phenomena. Phys. Rev. X 6, 021019 (2016).

    Google Scholar 

  51. 51

    Morris, S . Contagion. Rev. Econ. Stud. 67, 57–78 (2000).

    Google Scholar 

  52. 52

    Goffman, W. & Newill, V. A . Generalization of epidemic theory. Nature 204, 225–228 (1964).

    CAS  PubMed  Google Scholar 

  53. 53

    Daley, D. J. & Kendall, D. G . Epidemics and rumours. Nature 204, 1118 (1964).

    CAS  PubMed  Google Scholar 

  54. 54

    Bailey, N. T. J. The Mathematical Theory of Infectious Diseases and Its Applications (Charles Griffin & Co., 1975).

    Google Scholar 

  55. 55

    Goetz, M., Leskovec, J., McGlohon, M. & Faloutsos, C . Modeling blog dynamics. In Proc. International AAAI Conference on Weblogs and Social Media (eds Adar, E. et al.) (AAAI, 2009).

  56. 56

    Clauset, A., Shalizi, C. R. & Newman, M. E. J . Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).

    Google Scholar 

  57. 57

    Simkin, M. V. & Roychowdhury, V. P . A mathematical theory of citing. J. Assoc. Inf. Sci. Technol. 58, 1661–1673 (2007).

    Google Scholar 

  58. 58

    Kendall, M . A new measure of rank correlation. Biometrika 30, 81–89 (1938).

    Google Scholar 

  59. 59

    Varol, O., Ferrara, E., Davis, C. A., Menczer, F. & Flammini, A . Online human-bot interactions: detection, estimation, and characterization. In Proc. International AAAI Conference on Web and Social Media (AAAI, 2017).

  60. 60

    Bessi, A. & Ferrara, E . Social bots distort the 2016 U.S. Presidential election online discussion. First Monday http://dx.doi.org/10.5210/fm.v21i11.7090 (2016).

  61. 61

    Kumar, R., Novak, J. & Tomkins, A . Structure and evolution of online social networks. In Proc. 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 611–617 (ACM, 2006).

  62. 62

    Kwak, H., Lee, C., Park, H. & Moon, S . What is Twitter, a social network or a news media? In Proc. 19th International Conference on World Wide Web 591–600 (ACM, 2010).

  63. 63

    Holme, P. & Kim, B. J . Growing scale-free networks with tunable clustering. Phys. Rev. E 65, 026107 (2002).

    Google Scholar 

Download references

Acknowledgements

We are grateful to Twitter for providing public post data, to Tumblr for mobile scrolling data, to C. Silverman for the Emergent data, and to J. Gleeson, K. Church, S. Buthpitiya, M. Patel and G. Ciampaglia for discussions and assistance with the data analysis. This work was supported in part by the James S. McDonnell Foundation (grant 220020274) and the National Science Foundation (award CCF-1101743). X.Q. thanks the NaN group in the Center for Complex Networks and Systems Research (http://cnets.indiana.edu) for the hospitality during her stay at the Indiana University School of Informatics and Computing. She was supported by grants from the National Natural Science Foundation of China (No. 90924030), the China Scholarship Council, the ‘Shuguang’ Project of Shanghai Education Commission (No. 09SG38), and the Program of Social Development of Metropolis and Construction of Smart City (No. 085SHDX001). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

A.F. and F.M. developed the research question. X.Q., D.F.M.O., A.F. and F.M. designed the model. X.Q. and D.F.M.O. conducted the simulations and the primary analyses. D.F.M.O., A.S.S. and F.M. collected and analysed the empirical data. D.F.M.O., A.F. and F.M. wrote the manuscript. X.Q. and A.S.S. edited the manuscript.

Corresponding author

Correspondence to Diego F. M. Oliveira.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qiu, X., F. M. Oliveira, D., Sahami Shirazi, A. et al. Limited individual attention and online virality of low-quality information. Nat Hum Behav 1, 0132 (2017). https://doi.org/10.1038/s41562-017-0132

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing