Quantifying patterns of research-interest evolution


To understand quantitatively how scientists choose and shift their research focus over time is of high importance, because it affects the ways in which scientists are trained, science is funded, knowledge is organized and discovered, and excellence is recognized and rewarded19. Despite extensive investigation into various factors that influence a scientist’s choice of research topics821, quantitative assessments of mechanisms that give rise to macroscopic patterns characterizing research-interest evolution of individual scientists remain limited. Here we perform a large-scale analysis of publication records, and we show that changes in research interests follow a reproducible pattern characterized by an exponential distribution. We identify three fundamental features responsible for the observed exponential distribution, which arise from a subtle interplay between exploitation and exploration in research-interest evolution5,22. We developed a random-walk-based model, allowing us to accurately reproduce the empirical observations. This work uncovers and quantitatively analyses macroscopic patterns that govern changes in research interests, thereby showing that there is a high degree of regularity underlying scientific research and individual careers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: An example demonstrating the procedure to compose a topic tuple and topic vector.
Figure 2: Patterns in the research-interest evolution.
Figure 3: An illustration of the ‘seashore walk’.
Figure 4: Results of the ’seashore walk’.


  1. 1

    Kuhn, T. S. The Structure of Scientific Revolutions (Univ. Chicago Press, 2012).

    Google Scholar 

  2. 2

    de Solla Price, D. J. Little Science, Big Science... and Beyond (Columbia Univ. Press, 1986).

    Google Scholar 

  3. 3

    Merton, R. K. The Sociology of Science: Theoretical and Empirical Investigations (Univ. Chicago Press, 1973).

    Google Scholar 

  4. 4

    Rzhetsky, A., Foster, J. G., Foster, I. T. & Evans, J. A. Choosing experiments to accelerate collective discovery. Proc. Natl. Acad. Sci. USA 112, 14569–14574 (2015).

    CAS  Article  Google Scholar 

  5. 5

    Kuhn, T. S. The Essential Tension: Selected Studies in Scientific Tradition and Change (Univ. Chicago Press, 1979).

  6. 6

    Sinatra, R., Wang, D., Deville, P., Song, C. & Barabási, A.-L. Quantifying the evolution of individual scientific impact. Science 354, aaf5239 (2016).

    Article  Google Scholar 

  7. 7

    Wang, D., Song, C. & Barabási, A.-L. Quantifying long-term scientific impact. Science 342, 127–132 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Foster, J. G., Rzhetsky, A. & Evans, J. A. Tradition and innovation in scientists’ research strategies. Am. Sociol. Rev. 80, 875–908 (2015).

    Article  Google Scholar 

  9. 9

    Clauset, A., Arbesman, S. & Larremore, D. B. Systematic inequality and hierarchy in faculty hiring networks. Sci. Adv. 1, e1400005 (2015).

    Article  Google Scholar 

  10. 10

    Jones, B. F. & Weinberg, B. A. Age dynamics in scientific creativity. Proc. Natl. Acad. Sci. USA 108, 18910–18914 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Packalen, K. Multiple successful models: how demographic features of founding teams differ between regions and over time. Entrep. Reg. Dev. 27, 357–385 (2015).

    Article  Google Scholar 

  12. 12

    Duch, J. et al. The possible role of resource requirements and academic career-choice risk on gender differences in publication rate and impact. PLoS ONE 7, e51332 (2012).

    Article  Google Scholar 

  13. 13

    West, J. D., Jacquet, J., King, M. M., Correll, S. J. & Bergstrom, C. T. The role of gender in scholarly authorship. PLoS ONE 8, e66212 (2013).

    CAS  Article  Google Scholar 

  14. 14

    Malmgren, R. D., Ottino, J. M. & Amaral, L. A. N. The role of mentorship in protégé performance. Nature 465, 622–626 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Guimera, R., Uzzi, B., Spiro, J. & Amaral, L. A. N. Team assembly mechanisms determine collaboration network structure and team performance. Science 308, 697–702 (2005).

    CAS  Article  Google Scholar 

  16. 16

    Jones, B. F., Wuchty, S. & Uzzi, B. Multi-university research teams: shifting impact, geography, and stratification in science. Science 322, 1259–1262 (2008).

    CAS  Article  Google Scholar 

  17. 17

    Hoonlor, A., Szymanski, B. K. & Zaki, M. J. Trends in computer science research. Commun. ACM 56, 74–83 (2013).

    Article  Google Scholar 

  18. 18

    McNally, A., Prier, C. K. & MacMillan, D. W. Discovery of an α-amino c–h arylation reaction using the strategy of accelerated serendipity. Science 334, 1114–1117 (2011).

    CAS  Article  Google Scholar 

  19. 19

    Ericsson, K. A. in The Cambridge Handbook of Expertise and Expert Performance Ch. 38, 683–703 (Cambridge Univ. Press, 2006).

  20. 20

    Azoulay, P., Graff Zivin, J. S. & Manso, G. Incentives and creativity: evidence from the academic life sciences. RAND J. Econ. 42, 527–554 (2011).

    Article  Google Scholar 

  21. 21

    Bergstrom, C. T., Foster, J. G. & Song, Y. Why scientists chase big problems: individual strategy and social optimality. Preprint at https://arxiv.org/abs/1605.05822 (2016).

  22. 22

    March, J. G. Exploration and exploitation in organizational learning. Organ. Sci. 2, 71–87 (1991).

    Article  Google Scholar 

  23. 23

    Vilhena, D. A. et al. Finding cultural holes: how structure and culture diverge in networks of scholarly communication. Sociological Science 1, 221–238 (2014).

    Article  Google Scholar 

  24. 24

    Hidalgo, C. Why Information Grows: The Evolution of Order, from Atoms to Economies (Basic Books, 2015).

    Google Scholar 

  25. 25

    de Solla Price, D. J. & Beaver, D. Collaboration in an invisible college. Am. Psychol. 21, 1011 (1966).

    Article  Google Scholar 

  26. 26

    Jones, B. F. The burden of knowledge and the death of the renaissance man: is innovation getting harder? Rev. Econ. Stud. 76, 283–317 (2009).

    Article  Google Scholar 

  27. 27

    Uzzi, B., Mukherjee, S., Stringer, M. & Jones, B. Atypical combinations and scientific impact. Science 342, 468–472 (2013).

    CAS  Article  Google Scholar 

  28. 28

    Youn, H., Strumsky, D., Bettencourt, L. M. & Lobo, J. Invention as a combinatorial process: evidence from US patents. J. R. Soc. Interface 12, 20150272 (2015).

    Article  Google Scholar 

  29. 29

    Cokol, M., Iossifov, I., Weinreb, C. & Rzhetsky, A. Emergent behavior of growing knowledge about molecular interactions. Nat. Biotechnol. 23, 1243–1247 (2005).

    CAS  Article  Google Scholar 

  30. 30

    Sinatra, R., Deville, P., Szell, M., Wang, D. & Barabási, A.-L. A century of physics. Nat. Phys. 11, 791–796 (2015).

    CAS  Article  Google Scholar 

  31. 31

    Gonzalez, M. C., Hidalgo, C. A. & Barabasi, A.-L. Understanding individual human mobility patterns. Nature 453, 779–782 (2008).

    CAS  Article  Google Scholar 

  32. 32

    Song, C., Koren, T., Wang, P. & Barabási, A.-L. Modelling the scaling properties of human mobility. Nat. Phys. 6, 818–823 (2010).

    CAS  Article  Google Scholar 

  33. 33

    Simini, F., González, M. C., Maritan, A. & Barabási, A.-L. A universal model for mobility and migration patterns. Nature 484, 96–100 (2012).

    CAS  Article  Google Scholar 

  34. 34

    Yan, X.-Y., Zhao, C., Fan, Y., Di, Z. & Wang, W.-X. Universal predictability of mobility patterns in cities. J. R. Soc. Interface 11, 20140834 (2014).

    Article  Google Scholar 

  35. 35

    Barabasi, A.-L. The origin of bursts and heavy tails in human dynamics. Nature 435, 207–211 (2005).

    CAS  Article  Google Scholar 

  36. 36

    Malmgren, R. D., Stouffer, D. B., Motter, A. E. & Amaral, L. A. A Poissonian explanation for heavy tails in e-mail communication. Proc. Natl. Acad. Sci. USA 105, 18153–18158 (2008).

    CAS  Article  Google Scholar 

  37. 37

    Zhao, Z.-D. et al. Emergence of scaling in human-interest dynamics. Sci. Rep. 3, 3472 (2013).

    Article  Google Scholar 

  38. 38

    Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    Article  Google Scholar 

  39. 39

    Scholtes, I. et al. Causality-driven slow-down and speed-up of diffusion in non-markovian temporal networks. Nat. Commun. 5, 5024 (2014).

    CAS  Article  Google Scholar 

  40. 40

    Holme, P. & Saramäki, J. Temporal networks. Phys. Rep. 519, 97–125 (2012).

    Article  Google Scholar 

  41. 41

    Zhang, Q., Perra, N., Gonçalves, B., Ciulla, F. & Vespignani, A. Characterizing scientific production and consumption in physics. Sci. Rep. 3, 1640 (2013).

    CAS  Article  Google Scholar 

  42. 42

    Radicchi, F., Fortunato, S., Markines, B. & Vespignani, A. Diffusion of scientific credits and the ranking of scientists. Phy. Rev. E 80, 056103 (2009).

    Article  Google Scholar 

  43. 43

    Deville, P. et al. Career on the move: geography, stratification, and scientific impact. Sci. Rep. 4, 4770 (2014).

    Article  Google Scholar 

  44. 44

    Herrera, M., Roberts, D. C. & Gulbahce, N. Mapping the evolution of scientific fields. PLoS ONE 5, e10355 (2010).

    Article  Google Scholar 

  45. 45

    Radicchi, F. & Castellano, C. Rescaling citations of publications in physics. Phys. Rev. E 83, 046116 (2011).

    Article  Google Scholar 

  46. 46

    Pan, R. K., Sinha, S., Kaski, K. & Saramäki, J. The evolution of interdisciplinarity in physics research. Sci. Rep. 2, 551 (2012).

    Article  Google Scholar 

  47. 47

    Wei, T. et al. Do scientists trace hot topics? Sci. Rep. 3, 2207 (2013).

    Article  Google Scholar 

  48. 48

    Shen, Z. et al. Interrelations among scientific fields and their relative influences revealed by an input–output analysis. J. Informetr. 10, 82–97 (2016).

    Article  Google Scholar 

  49. 49

    Shi, F., Foster, J. G. & Evans, J. A. Weaving the fabric of science: dynamic network models of science’s unfolding structure. Social Networks 43, 73–85 (2015).

    Article  Google Scholar 

  50. 50

    Boyack, K. W., Klavans, R. & Börner, K. Mapping the backbone of science. Scientometrics 64, 351–374 (2005).

    CAS  Article  Google Scholar 

  51. 51

    Mandelbrote, S. Footprints of the Lion (Cambridge Univ. Library, 2001).

    Google Scholar 

  52. 52

    Petersen, A. M., Riccaboni, M., Stanley, H. E. & Pammolli, F. Persistence and uncertainty in the academic career. Proc. Natl. Acad. Sci. USA 109, 5213–5218 (2012).

    CAS  Article  Google Scholar 

  53. 53

    Petersen, A. M. et al. Reputation and impact in academic careers. Proc. Natl. Acad. Sci. USA 111, 15316–15321 (2014).

    CAS  Article  Google Scholar 

  54. 54

    Rybski, D., Buldyrev, S. V., Havlin, S., Liljeros, F. & Makse, H. A. Scaling laws of human interaction activity. Proc. Natl. Acad. Sci. USA 106, 12640–12645 (2009).

    CAS  Article  Google Scholar 

  55. 55

    Redner, S. A Guide to First-Passage Processes (Cambridge Univ. Press, 2001).

    Google Scholar 

  56. 56

    Newman, M. E. The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98, 404–409 (2001).

    CAS  Article  Google Scholar 

  57. 57

    Araújo, E. B., Moreira, A. A., Furtado, V., Pequeno, T. H. & Andrade, J. S. Jr Collaboration networks from a large CV database: dynamics, topology and bonus impact. PLoS ONE 9, e90537 (2014).

    Article  Google Scholar 

  58. 58

    Shen, H.-W. & Barabási, A.-L. Collective credit allocation in science. Proc. Natl. Acad. Sci. USA 111, 12325–12330 (2014).

    CAS  Article  Google Scholar 

  59. 59

    Strumsky, D., Lobo, J. & Van der Leeuw, S. Using patent technology codes to study technological change. Econ. Innov. N. Technol. 21, 267–286 (2012).

    Article  Google Scholar 

  60. 60

    King, D. A. The scientific impact of nations. Nature 430, 311–316 (2004).

    CAS  Article  Google Scholar 

  61. 61

    Milojević, S. Principles of scientific research team formation and evolution. Proc. Natl. Acad. Sci. USA 111, 3984–3989 (2014).

    Article  Google Scholar 

  62. 62

    Bergstrom, C. T., West, J. D. & Wiseman, M. A. The eigenfactor metrics. J. Neurosci. 28, 11433–11434 (2008).

    CAS  Article  Google Scholar 

  63. 63

    Radicchi, F., Fortunato, S. & Castellano, C. Universality of citation distributions: toward an objective measure of scientific impact. Proc. Natl. Acad. Sci. USA 105, 17268–17272 (2008).

    CAS  Article  Google Scholar 

  64. 64

    Yao, L., Wei, T., Zeng, A., Fan, Y. & Di, Z. Ranking scientific publications: the effect of nonlinearity. Sci. Rep. 4, 6663 (2014).

    CAS  Article  Google Scholar 

  65. 65

    Ke, Q., Ferrara, E., Radicchi, F. & Flammini, A. Defining and identifying sleeping beauties in science. Proc. Natl. Acad. Sci. USA 112, 7426–7431 (2015).

    CAS  Article  Google Scholar 

Download references


We thank A.-L. Barabasi for providing the initial dataset, A.-L. Barabási and G. Korniss for discussions. This work was supported by the Army Research Laboratory under Cooperative Agreement Number W911NF-09-2-0053. T.J. is supported by the Natural Science Foundation of China (61603309) and CCF-Tencent RAGR (20160107). D.W. is supported by the Air Force Office of Scientific Research under award number FA9550-15-1-0162 and FA9550-17-1-0089. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information




T.J., D.W. and B.K.S. designed the research. T.J. performed numerical simulations and analysed the empirical data. T.J., D.W. and B.K.S. prepared the paper.

Corresponding authors

Correspondence to Tao Jia or Dashun Wang or Boleslaw K. Szymanski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary Information

Supplementary Figures, Supplementary Notes, Supplementary Discussion, Supplementary References. (PDF 608 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jia, T., Wang, D. & Szymanski, B. Quantifying patterns of research-interest evolution. Nat Hum Behav 1, 0078 (2017). https://doi.org/10.1038/s41562-017-0078

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing